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Abstract

We conduct a nowcasting analysis on Japan’s GDP using machine learning. We
employ machine learning approaches because the estimation of the mixed-data sam-
pling (MIDAS) models without parameter restriction, in the presence of text in-
formation extracted from newspapers potentially involves high-dimensional data.
Based on the unrestricted MIDAS model with macroeconomic indicators, survey-
based indicators, and text information, we find that text information helps improve
nowcasting performance during the COVID-19 period. In addition, the forecasting
combination of machine learning and dynamic factor model has the potential to
outperform using either method alone.
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1 Introduction

We employ machine learning methods to estimate an unrestricted mixed-data sampling
model for nowcasting the growth rate of Japan’s gross domestic product (GDP). Our set
of predictors includes ‘hard’ data, consisting of basic monthly and quarterly macroeco-
nomic variables, survey-based indicators (‘soft’ data), and news data constructed from
text information in news articles. Since the target variable is quarterly data and the
predictors are both monthly and quarterly data, our approach involves estimating mixed
frequency data models. We use machine learning methods because they do not require
any parametric restrictions on the weight function in mixed-data sampling models (U-
MIDAS).

The machine learning approach is also advantageous for incorporating text informa-
tion into the forecast model, as such predictors can be high-dimensional. This contrasts
with the work of Hayashi and Tachi (2023), who use the maximum likelihood method
to estimate the dynamic factor model (DFM) for nowcasting the growth rate of Japan’s
GDP based on ‘hard’ and ‘soft’ data.

There are two main methods for handling mixed-frequency data when estimating the
model. In the first method, low-frequency data are converted into high-frequency data
by augmenting the low-frequency observations. The model is then estimated using the
high-frequency data. For example, in the case of stock and price variables, a hypothetical
high-frequency observed value is generated by linear interpolation of observed values. For
flow variables and rates of change, the values can be divided equally into each period.
The maximum likelihood estimation of DFM, employed by Hayashi and Tachi (2023),
falls under this method, as the high-frequency observations are treated as latent variables
in the state space model and their values are estimated.

In the second method, high-frequency data are aggregated and all variables are ex-
pressed in terms of low-frequency data. The prediction using MIDAS models, originally
proposed by Ghysels, Santa-Clara, and Valkanov (2005), falls under this method. In par-
ticular, we employ the unrestricted MIDAS (U-MIDAS) model, as considered by Foroni,

Marcellino, and Schumacher (2015), and estimate the model using various types of ma-



chine learning. To nowcast the Japanese economy, the U-MIDAS model was used by
Chikamatsu et al. (2021). However, they did not incorporate text information in their
analysis.

Our paper is closely related to the literature on nowcasting and forecasting macroe-
conomic variables using text data. For example, Goshima et al. (2021) used newspaper
article data and found that text information is useful in forecasting Japanese inflation.
Ellingsen, Larsen, and Thorsrud (2022) found that news-based data contains valuable
information not captured by hard economic data when forecasting US consumption.
Kalamara et al. (2022) claimed that newspaper text data are useful in forecasting key
macroeconomic variables in the UK.

Our analysis is also related to an increasing number of studies that employ machine
learning methods in macroeconomic forecasting. For example, Diebold and Shin (2019)
employed Lasso and Ridge regression and their extensions for forecasting Euro area GDP.
Giannone, Lenza, and Primiceri (2021) applied a Bayesian forecasting framework that
included Lasso, Ridge, and Elastic Net to hard macroeconomic data, among other series,
to evaluate the usefulness of sparse modeling.

The effectiveness of ensemble machine learning methods based on regression trees,
such as random forests, was emphasized by Medeiros et al. (2021) and Chen et al.
(2022). Bai and Ng (2009) examined the effectiveness of boosting in forecasting inflation,
interest rates, industrial production, employment, and the unemployment rate using a
large set of US macroeconomic data.

Furthermore, Kim and Swanson (2018), Gu, Kelly, and Xiu (2020), Maehashi and
Shintani (2020), and Coulombe et al. (2022) conducted horse race analyses using various
machine learning methods to forecast macroeconomic and financial variables.

The rest of the paper is organized as follows. Section 2 introduces the model for mixed
frequency data and the machine learning methods used in the analysis. In Section 3, we
describe the data and procedures for evaluating nowcast performance. Section 4 presents

the main empirical results, followed by concluding remarks in Section 5.



2 Mixed frequency data and machine learning

2.1 Unrestricted MIDAS model

We consider the problem of predicting the quarterly target variable using monthly pre-
dictors. In practice, we need to incorporate the fact that the timing of the release differs
across the predictors. This issue is often referred to as the ragged-edge data problem (see
Banbura, Giannone and Reichlin, 2011). For notational simplicity, we assume that the
one predictor, z;, becomes available exactly one month after the end of reference month,
and the other predictor, z;, is observed in the same month. Most of the hard data we
use in the analysis are represented by the former type predictor z;. In contrast, news
data and financial market series can be represented by the latter type of predictor z;.
While we use multiple predictors with more than two types of data release timing in the
empirical analysis, the following discussion can be extended with a simple modification.

Since the predictor is observed monthly, we denote the time index of predictor variable
x; and z to take multiples of 1/3. On the other hand, since the target variable is observed
quarterly, we let its time subscript of y; to take integer values. The mixed-data sampling

(MIDAS) model for h-period-ahead forecast of y; using z; as a predictor is given by:

pz—1

Yirh = Pno + Bu Z wj(0>Lj/3Zt + Et4n (1)
=0

where w;(0) = 1 +0ad" [(570= ebrit+64i") g the weighted moving average weight func-
tion, § = (6y,...0,) are the parameters of the weight function. For example, in Ghy-
sels, Santa-Clara, and Valkanov (2005), ¢ = 2 and the weight function w;(6;,62) =
hi+027" (5P 101402 ig employed.! Since the sum of the weights is given by >7% 1w, (0) =
1, with the choice of p, = 3 and 6; = --- = 0, = 0, we can confirm x? corresponds to
the 3-month average. In the MIDAS model, since the coefficients (pp, Sp1) of the (1)

equation and the weight function parameters 6 = (64, ...,0,) are unknown, they are esti-

mated simultaneously using nonlinear least squares. The benchmark MIDAS regression

ISee also Ghysels and Valkanov (2006) and Clements and Galvao (2008).



model (1) can be extended to the model with the lagged dependent variables as additional

predictors given by

py—1 p=—1
Yeen = b+ > Ong Ly + Bua > wi(0) Lz + . (2)
=0 =0

Andreou, Ghysels and Kourtellos (2013) refer (2) to the ADL-MIDAS regression model.
By expanding equations (1) and (2), we obtain the unrestricted MIDAS (U-MIDAS)

models given by

pz—1
Yesn = pn + D 00 L2 + erpn (3)
§=0
and
py—1 pz—1
Yern =t Y S+ on Lz + e, (4)
j=0 3=0
respectively.

Note that the number of parameters of the U-MIDAS model in equation (3) is p, + 1
while the number of parameters of the MIDAS model in equation (1) is ¢+ 2. For the case
of N monthly predictors, the number of parameters Np, + 1 can become large for a large
N. However, a U-MIDAS model with a large number of parameters can be estimated by
using machine learning procedures explained in the next subsection.

It should also be note that for the same target quarterly GDP, available observations
differ depending on whether the timing of nowcast (or forecast) is either at the first,
second or third month of a quarter. Such a different information structures, along with
the ragged-edge problem of additional predictor x;, can be incorporated by adjusting the
index j on the coefficient of each predictor in (3) and (4) to begin with ¢(> 0) instead of
0 where ¢ represents the information delay.

In summary, we consider the following three types of the U-MIDAS model to construct
the nowcast (h = 0) of Japanese GDP. Without the loss of generality, predictors are
denoted by y; for the lagged quarterly GDP; x; for monthly variables with one month
information delay (most hard data); and z, for monthly variables with no information

delay (news data and policy rate).



1. M1 (End-of-month 1) type model

py+l Pz+2 pa+1
Ytth = Hn + Z bni Ly + Z Ong Py + Z L%z + € (5)
=2 =3 j=2

2. M2 (End-of-Month 2) type model

Py pot+1 Pz
Yt+h = P + Z ¢h,jL]yt + Z 5h,jLJ/35Et + Z ’Yh,jL]/BZt + Et+hn (6)
j=1 j=2 =1

3. M3 (End-of-Month 3) type model

Py Dz pz—1
Yirh = Hn + Z O L7y + Z O L w4 Z Y L2 4 en (7)
j=1 Jj=1 J=0

Here, M1 type model is estimated only using observations from February 1, May 1,
August 1, and November 1 in each year. Similarly, M2 type model uses observations
from March 1, June 1, September 1, and December 1 in each year, while M3 type model
uses observations from January 1, April 1, July 1, and October 1 in each year. For the
lag length parameters, we impose the following restrictions: p, > 1 for M1 type model,

p. > 1 and p, > 2 for M2 type model; and p, > 2 and p, > 3 for M3 type model.

2.2 Machine learning

We consider a set of machine learning (ML) methods to estimate unrestricted MIDAS (U-
MIDAS) models. We divide the machine learning methods available for macroeconomic
forecasting into four major types: (i) regularized least squares estimators, (ii) support
vector regression, (iii) tree-based methods, and (iv) neural networks. Below, we describe

each type separately.

2.2.1 Regularized least squares estimator

The first type is regularized least squares estimators, which add a penalty term, or reg-

ularization term, to the objective function to prevent overfitting. In this paper, we focus



on the elastic net estimator.
Consider a simple linear regression model with a target variable ;. and predictors
X = [flflt, Tot, ---th]

Yern = Bo + 3o Bimit + Eran (8)

Minimizing the residual sum of squares yields the OLS estimator of § = [y, (1, ...0N]
given by

~ ' T N 2

Bors = argminy_,_, (yt+h — bo — Zizlﬁﬂit) . (9)

The elastic net estimator uses a linear combination of the L; norm Zf\il |5i] and the

Ly norm, defined as follows:

Benet = arg min [Zthl <yt+h — Bo — Zﬁﬁi%t)z + w)\Zfilfﬁi\ + (1 - W))\Zﬁilﬁf .
(10)
The additional adjustment parameter w controls the relative weight between the L,
norm penalty and the L, norm penalty. Two adjustment parameters, w and A, can be
selected simultaneously to minimize the MSE calculated by K-fold cross-validation.
By combining the penalties of the L; and L, norms, elastic net can handle multi-
collinearity well by shrinking coefficients and also perform variable selection by setting

some coeflicients to zero.

2.2.2 Support Vector Regression (SVR)

Support Vector Regression (SVR) is designed to fit a regression model within an allowable
error margin €, while maximizing model fit. It employs kernel functions, typically the
Radial Basis Function (RBF), to handle nonlinear relationships. The model can be
described by:

n

fla) = (o — af) K (z, ;) + b (11)

i=1
where «; and o are dual coefficients, K (x, x;) is the kernel function, and b is the bias.

The RBF kernel is defined as:



K (z,7;) = exp(—7[|z — z[|*) (12)

where v determines the kernel’s width, controlling the influence of each support vector.

SVR’s objective is to minimize:

30— K ) + € Y max(0, [ — ()] — (13)

where C' is the regularization parameter. This configuration penalizes deviations
larger than e, ensuring the model is both flat and accurate within the epsilon margin.

SVR provides a robust alternative to traditional regression methods, particularly use-
ful for datasets with complex nonlinear relationships or when the number of predictors

exceeds the number of observations.

2.2.3 Random Forest and Boosting

The third type of ML methods is regression trees combined with ensemble learning. A

regression tree with M terminal nodes can be written as

M
Yirh = Z Omlix,cRn} + Et4n (14)

m=1

where 17, is the indicator function, R,, is the partition of the range of X;, and 6,, is the
mean of y; conditional on X; € R,,.

Regression trees accommodate non-linearities but are prone to overfitting. Ensemble
methods mitigate these issues and are useful in macroeconomic forecasting due to their
ability to capture complex relationships and robustness to outliers in economic data.

Random forests, introduced by Breiman (2001), use bootstrap aggregating (bagging)

and reduce correlation between tree predictions. The final forecast is the average of all

b)

bootstrap forecasts: B~ S0 @EJF

,» where only a subset of predictors are used at each
node.

Boosting, introduced by Schapire (1990) and Freund (1995), estimates models sequen-



tially. At each stage s, the model is updated as:

M
gs(Xt) = gs—l(Xt) +n Z esml{XtERsm} (15)

m=1

where 7 is the learning rate and the new tree is estimated using the previous residual.
We employ Light GBM for its computational efficiency, which is particularly beneficial

when dealing with large-scale economic datasets.

2.2.4 Neural Networks

The fourth type covers models based on neural networks: Multi-Layer Perceptrons (MLPs),
Convolutional Neural Networks (CNNs), and Long Short-Term Memory networks (LSTMs).
MLPs are basic neural networks with interconnected layers. CNNs, adapted from image
processing, use convolutional layers to identify important features in time series. LSTMs
address long-term dependencies in sequence data.

For an MLP with one intermediate layer, the h-period-ahead forecast model is:

q

Ytth = Z 0ih;(Xt) + b+ eeqn (16)
=1

hi(Xi) = o(w; X, + b;) (17)

where X; and w; are N x 1 vectors, o is the activation function, h; is the hidden unit,
and ¢ is the number of hidden units.

A n + 1-layer MLP (with n intermediate layers) is given by:

Yoo = 00VR 16 ey (18)

R = [o (67RO 150 Y) L o (VR gDy

h) — [o(wW] X+ b1), .y ‘7<w:11Xt + b))’



where A is the vector of hidden units in the ¢-th layer, Hl(f) are weight vectors, and b,(f)

are bias terms.

z —z

tanh o(z) = e

Common activation functions are sigmoid o(z) = and

ReLU o(2) = max(0, z), where z is the input.”

CNNs replace the MLP’s intermediate layer with convolutional and pooling layers.
The convolutional layer applies a locally weighted sum using a filter, while the pooling
layer reduces the output dimension. This structure is particularly useful for analyzing
time series data like macroeconomic variables.

Let us set the forecast horizon h at 1 and assume that monthly time series {y, 1, T 11,
is available, where ;1 is a target variable and z; is a single predictor. By introducing non-
linearity into a simple distributed lag model of order 12, 3,11 = ,LH—Z;I:O 0;%4—j+Erq1, and
extending to MLP with ¢ number of hidden units, we obtain 3,1 = 23:1 Oih; +b+ e
where h; = o(w;X; + b;) is a hidden unit and X; = (x4, 24—1,.,24-11)" is the inputs.
Since the total number of parameters is ¢ x (12 + 1) + ¢ + 1, the number of param-
eters in MLP tends to be large even when the number of units is not so large. Let
us now replace the intermediate layer of this MLP with the convolutional and pool-
ing layers of the CNN. In the convolution layer, the locally weighted moving average
of the 12 lag variables is normalized by the activation function. The weight of this
local weighted average is called the filter, and its length is called the filter size. The
usual filter size is an odd number, for example, for 3 months, the weighted moving av-
erage is calculated using the weights w = (wy,ws,ws) (and the bias term b). In this
case, the filter will be out of the data range at the endpoints, but this is handled by
substituting 0 or not calculating a weighted moving average. For example, when the
observed value of the target variable 13 at ¢ = 12 and the observed value of the predic-
tor variable X1o = (219, 711, ..., 71)’, we have {hgc),hgc), ...,hg%)} = {o(w' (212, x11, T10)" +
b),o(w'(x11, T10, T9)" + b), ..., 0 (W' (23, 2, 21)" + b)} if the endpoints are not calculated.

Dimension of the 10 output values of the convolution layer are reduced in the sub-

2Traditionally, sigmoid functions were used for shallow networks. However, in deep learning, sigmoid
functions can lead to vanishing gradients. Tanh functions reduce this problem, while ReLU functions
avoid it entirely.
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sequent pooling layer. For example, in the case of 5-month max pooling, we have
(AP nPY = fmax(h\?, nS?, 1Y 1, D), max(, B B B BN Y. Likewise, for
5-month average pooling, we have{h\” hP} = {5’1Z?:1h§6),5’12]1.026h§c)}. The two
output values of the pooling layer are combined into the observed target variable in the
subsequent fully-connected layer by 413 = 232:1 Hjhg-p ) 4 by + €13. When training CNNs,
parameters are estimated by back propagation as in MLP using observed values from
t =12 tot = T. As described above, convolution using only current and past values
in terms of the objective variable is called causal convolution. In this CNN, the total
number of parameters to be estimated is 3+ 1+ 2+ 1 = 7, because the parameters are
the weight of one filter w and the bias term b in the convolution layer, the weight of all
coupling layers {6; }?:1 and the bias term by ( There are no parameters to be estimated in
the pooling layer). This is a significant reduction compared to the number of parameters
in the MLP when ¢ = 3, for example, which is 3 x (12+ 1) +3 + 1 = 43.

As a third neural network, we consider the recurrent neural network (RNN). Using a

simple RNN; the forecast model can be given by

q
Yt+h = Z Hjh]t +b+ Et+h (19)
j=1
q
hje = o(Wi X, + ) Ojchp—1 + b)) (20)
k=1

where {hjt,l}?zl represents the ¢ hidden units of the middle layer in period ¢ and ¢ is the
activation function. The time-series structure is introduced into the RNN by the adding
past information {hg_;}i_, along with the usual N x 1 predictor variable X; as input
to the intermediate layer (20). Hochreiter and Schmidhuber (1997) introduced a gating
mechanism called long short-term memory (LSTM) to RNNs. The state of the LSTM is
represented by an intermediate layer h; and a memory cell Cy, and the information flow is

controlled by each gate. For simplicity, consider the case of one-dimensional intermediate

11



layer so that the input gate, forget gate, and output gate can be written as

iy = og(wi (X7, he—1) + b;) (21)
fo = og(Wi(X{, hy—1)' + by) (22)
0y = 0g(wo(Xy, hi—1)" + Do) (23)

where h; is the (scalar) hidden unit of the intermediate layer in period ¢, b;, by, and b,
are bias terms, w;, wy, and w, are (N +1) x 1 vectors of weights, o, is the gate activation
function, usually a sigmoid function. If we also assume one-dimensional memory cell, the

current C} is given by

Cy = fi x Cio1 + 144 X U(wé(Xév hi—1) +bc) (24)

and the current h; is given by

hy = 0; X 0(C}). (25)

The forecast model is given by y;, = 6h; + b+ c41, where b, and b are bias terms, w, is a
(N +1) x 1 vector of weights, 6 is a scalar weight, and o is an activation function, usually
the tanh function. In (24), how much new information o(w’.(X}], hy—1)" + b.) is added to
the storage cell C} is controlled by the input gate ¢; and how much past information C;_
is left is controlled by the forget gate f;. The output (25) expression of the intermediate
layer is also controlled by the output gate o;. Intuitively, by keeping the values of these

gates within appropriate ranges, the model can avoid the vanishing gradient problem.

2.3 Dynamic factor models

The performance of nowcasting and forecasting based on machine learning methods is
compared with those based on DFM. Following Mariano and Murasawa (2003), Giannone,
Reichlin and Small (2008), Banbura and Modugno (2014) and Luciani et al. (2018)
among others, we estimate DFM by the maximum likelihood method allowing for mixed

frequency data. To review this model, for simplicity, assume that the two series of monthly

12



data {y; ,,}, with a new monthly time index ¢,, = 1,...T},, are described by a DFM

given by

*
i A1 €1y,
= St +
A2 €2t

where \;, for i = 1,2, is a factor loading, f;  is a scalar common factor which follows an
AR model
by
Fim =D Giftni+ €t (26)

=1

and e; , for i = 1,2, is an idiosyncratic error term which follows an AR model
pi
City = Z Pj€itm—j t Eity- (27)
j=1
Let us now assume that z;, is observed monthly, but only

Yt = Vi T Ui 1 T Y o (28)

is observed for each end of the quarter. That is, y;,, is observed only when t,, = 3t, but
is a missing observation when t,, = 3t — 1 and t,, = 3t — 2. Therefore, for t,, = 3t, the

measurement equation is given by

ftm
ftm—l
ftmf2

€1,

Ty Ty AM 0 0 1000

m m

Yt (T VAR VA A2 A2 A 01 1 1
€2t

€2¢,,—1

€2t,,—2

In our analysis, we use both monthly hard data and news data for z;, and forecast y;,,

using year-on-year growth rate transformation instead of (28).

13



3 Data and procedures

3.1 Predictors

3.1.1 Hard data: macroeconomic indicators

We use a subset of the data adopted in the New Indices of Business Conditions, which the
Cabinet Office claims better captures gross product. In the dataset, we exclude nominal
series as well as construction statistics, which have been subject to overestimation and
considered unreliable by some economists.

As a set of predictors from hard data, we use 10 monthly macroeconomic indicators
and lagged quarterly GDP growth rate (Table 1). These predictors are a subset of the data
adopted in the New Indices of Business Conditions, which the Cabinet Office claims better
captures gross product. In the dataset, we exclude nominal series as well as construction
statistics, which have been subject to overestimation and considered unreliable by some
economists. For each variable, the delay of release in terms of the number of days is

shown in the ”Delay” column of Table 1.

3.1.2 Soft data: survey-based indicators

Previous studies, such as Bragoli (2017) and Hayashi and Tachi (2023), have demon-
strated that survey-based (‘soft’) indicators are valuable alongside standard macroeco-
nomic (‘hard’) indicators in a Dynamic Factor Model (DFM) framework. Consequently,
we incorporate survey-based indicators in our nowcasting exercise. Table 1 lists all survey-
based indicators used in this study. Unlike Hayashi and Tachi (2023), who used the
Tankan Survey compiled by the Bank of Japan, we employ Reuters’ Tankan Survey. This
survey is designed to capture business sentiment and provides similar information to the
Bank of Japan version. We prefer the Reuters survey because it offers monthly data,

whereas the Bank of Japan version is available only quarterly.
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3.1.3 News data

News data from January 1992 to December 2022 are extracted from the business section
in Mainichi Shimbun. Here, one document corresponds to a single article and our corpus
consists of all articles. The total number of articles is approximately 300 thousands. On
average, there are 1,200 articles available a month. We construct two types of text-based

indicators. The release delays for both types of indicators are set to 1.

Text metrics based on term frequency

The first approach is based on term frequency. We first pick up the most frequent 1000
nouns from articles up to December 2016 as the vocabulary to calculate term frequency
(tf) for each article. The tf of a term w; in a document d;, adjusted for document length,

is defined as
__ the number of w; appears in document d;

tf(wju dz) -

total number of words in document d;

By calculating tf for each article (document), and then averaging the tf for all articles
in each month yields a monthly observation of tf series for a particular term. Based on
these tf series, we then calculate the term frequency inverse document frequency (tf-idf)

defined as follows:

tf-idf (wj, d;)y = tf (wj, d;) - idf (w;, Dy), where Dy is the corpus , and

df (w;, Dy) = | the number of documents inD, ‘1
idf (w; =lo
A gthe number of documents that contain w; inD;

The inverse document frequency idf (w;, D;) is a measure of how much information
the term w; provides, and it increases as w; becomes rare in D,.

Since the target of our nowcasting exercise is GDP, it is preferable that the inverse
document frequency captures information relevant to current business cycles. We explic-
itly make D, dependent on time ¢, that is, D; contains all documents from 50 months
(about 1 business cycle) before t. Also, the rolling scheme ensures us to avoid data leak-
age problem. In other words, since we only use information from articles up to the day

we make the prediction, no future information about the target variable is utilized.
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When the text metrics are fed into the models described below, we select top n
principal components such that the selected components account for 50% of the total
variance. This amounts to selecting n = 15 components in our analysis. We will refer to

these principal components simply as TO in the following analysis.

Univariate dictionary-based text metric

The second approach to transforming preprocessed text into quantitative time series
involves methods that establish a fixed relationship between input and output, without
any learning component. We refer to this approach as dictionary methods. Dictionary
methods assign specific scores (positive or negative) to particular terms and calculate the
net score per month. The dictionaries we use are based on the works of Takamura, Inui,
and Okumura (2006); Higashiyama, Inui, and Matsumoto (2008); Ito et al. (2018); and
Goshima, Shintani, and Takamura (2022).

The two dictionaries by Takamura, Inui, and Okumura (2006) and Higashiyama, Inui,
and Matsumoto (2008) aim to extract sentiment in a general context. On the other
hand, the dictionaries provided by Goshima, Shintani, and Takamura (2022) and Ito
et al. (2018) are domain-specific. The former is designed to extract sentiment about
macroeconomic developments, while the latter focuses on financial documents to measure
market sentiment. For the sake of brevity, we refer to the text metrics generated by these
four dictionaries as T1, T2, T3 and T4, respectively.

In addition, we use the method developed by Baker, Bloom, and Davis (2016) to
construct the economic policy uncertainty (EPU) index. We will refer to the EPU index

simply as T5 in the following analysis.

3.2 Out-of-sample forecast evaluation

3.2.1 Models

The forecasts are constructed using one of seven machine learning methods, which are
applied directly to estimate the seven U-MIDAS models. The seven machine learning

methods are Elastic Net, Support Vector Regression (SVR), Random Forest, Boosted
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Trees (implemented through LightGBM), Multilayer Perceptron (MLP), Convolutional
Neural Network (CNN), and Recurrent Neural Network (RNN with LSTM). The DFM
forecasts are constructed based on the specification (py, p;) = (2, 1), which is standard in
the literature and also applied in Hayashi and Tachi (2023).

Additionally, we conduct a forecast combination of DFM and ML, either by a simple
arithmetic mean of the predictions produced by DFM and one out of 7 ML methods or
by DFM and several MLs at the same time.

We evaluate the simulated out-of-sample forecast performance of 7 machine learning
methods and one DFM. The hyperparameters for the machine learning models are re-
tuned at each forecast point using 5-fold cross-validation. In this process, we employ
an expanding window approach, progressively increasing the training data size while
maintaining a validation data size of one.

For example, at period t = R, we construct the forecast yr; of a target variable yp,
using the information only up to ¢ = R and evaluate the forecast error yrp,s — Ygin. For
the next period t = R + 1, the model is re-estimated using the data up tot = R+ 1 and
forecast value yripy1 is constructed. Therefore, the hyperparameters may be different
depending on the point of forecast, even if the model specification is unchanged. For
a benchmark, we also estimate an AR(1) model and update the coefficient in the same

manner.

3.2.2 Evaluation scheme

We use a recursive scheme in our simulated out-of-sample nowcast exercises. Recall
that we use observations available at February 1, May 1, August 1, and November 1 in
each year to estimate the M1 type model. Similarly, observations at March 1, June 1,
September 1, and December 1 are used for the M2 type model, while observations at
January 1, April 1, July 1, and October 1 are used for the M3 type model.

In the recursive scheme, we start to produce pseudo real-time out-of-sample prediction
at January 1, 2018 using information after January 1, 2003. The sample size increases

as we proceed to the nowcast point. For example, to construct a nowcast (b = 0) for
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2018Q4 based on the M3 type model, the estimation period is from January 1, 2003 to
January 1, 2019 in the recursive scheme. The next nowcast for 2019Q1 based on the M3
type model is then computed by estimating the same model using data from January 1,
2003 to April 1, 2019. This procedure is repeated until the nowcast for 2022Q4 based on
the observations from January 1, 2003, to October 1, 2022, is constructed.

Nowcasts based on the M1 and M2 type models can be constructed in a similar
manner. For example, to construct a nowcast for 2019Q1 based on the M1 type model,
the estimation period is from January 1, 2003 to November 1, 2018. The next forecast
for 2019Q2 based on the M1 type model is then computed by estimating the same model
using data from January 1, 2003 to February 1, 2019. This procedure is repeated until
the forecast for 2022Q4 based on the observations from January 1, 2003 to November 1,
2022.

As a measure of forecast performance, we focus on the root mean square forecast
errors (RMSEs) defined by the square root of P! ZtT:_]g (Yean — ﬂHh)Q, where ¥4, is the
forecast value for horizon h by a forecast model, R is the initial sample size in estimating
the model, and P(= T — R) is the number of forecasts. If the RMSE for model 1 is
smaller than the RMSE of model 2, we view that the former outperforms the latter in

the out-of-sample forecast.

3.3 Strategy for putting text metrics into the model

One goal of our study is to measure the benefit of including text information in addition
to ‘hard’ data or both ‘hard” and ‘soft’ data in nowcasting models. However, we have no
ex-ante information about which combination of text metrics performs best. Therefore,
we explore all plausible patterns of text metric predictors.

In particular, when making a single prediction, the variables we use always include
all of the ’hard’ variables (category 'Hard’ in Table 1), none or all of the ’soft’” variables
(category ’Soft” in Table 1), none or one of the text metrics based on a general sentiment
dictionary (T0, T1, and T2 in Table 1), and none or one of the text metrics based on

a domain-specific dictionary (T3, T4, and T5 in Table 1). Although it is common to
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include ’soft’ data in the existing literature using DFM, its usefulness in ML settings is
less clear, and thus we examine it explicitly in this paper.

Therefore, given a model, such as Elastic Net, we consider 2 x 4 x 4 = 32 different
patterns of regressors and estimate 32 variants of Elastic Net. This process entails esti-
mating seven ML models and one DFM, resulting in the estimation of 32 x 8 = 256 models
for each prediction. In this paper, we select at most one variable from each category as
described above because variables from the same category are likely to share similar in-
formation. Moreover, limiting the number of variables reduces the possible combinations

of variables, thus significantly reducing computation time.

4 Results

Let us now evaluate the performance of all the models considered in terms of the Root
Mean Squared Errors (RMSEs) of the nowcast (h = 0). Table 3 and Table 2 present the
best-performing triple of input, model, and the resulting RMSE for the forecast horizon
and forecast period, with the input fixed at ‘hard’ and ‘soft’ in Table 3, and without
restrictions on the input in Table 2. For example, the first row in the Janl7-Decl9
column in Table 3 shows that for the M1 type nowcasting, the RMSE of mlp is 0.743,
and this is the lowest among 18 combinations® when we consider only ‘hard’ and ‘soft’
data as input.

We divided the out-of-sample forecasting period into two periods. The first period
Jan17-Decl9 corresponds to "normal” time in the sense that nowcasting exercises using
DFM with ‘hard’ and ‘soft’ data work well in the literature. The second Jan20-Dec22
period corresponds to the period when the COVID-19 pandemic was at its most intense,
during which the accuracy of traditional forecasting exercises deteriorates significantly
compared to the "normal” period.

We compare the results of Table 2 and Table 3 in Table 5, where the relative RMSE

318 models: arl, dfm, enet, svr, rf, lgbm, mlp, cnn, Istm, dfm+enet, dfm-+svr, dfm+rf, dfm+lghm,
dfm+mlp, dfm+cnn, dfm+lIstm, meand (unweighted average of enet, rf, mlp, and dfm), mean8 (un-
weighted average of 1 dfm and 7 mls), where A + B denotes forecast combination by unweighted mean
of model A and model B.
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columns show the ratio of the RMSEs, and the statistic columns report the test statistic
developed in Pitarakis (2023) for the null hypothesis that the predictions of the best
model using only H and S have the same accuracy as the predictions of the best model
when the input is unrestricted. The test introduced in Pitarakis (2023) accommodates the

comparison of nested models in a recursive scheme and is thus suitable for our situation.

4.1 Benefits of news data in prediction

Table 5 shows that the incorporation of news text data consistently reduces prediction
errors, and most of these improvements are statistically significant. This advantage is
particularly evident during the COVID-19 period, where traditional methods experience
a marked decline in accuracy. Furthermore, as shown in Table 2, the inclusion of multiple
types of text data generally outperforms the inclusion of a single type of text data.

A similar comparison is conducted in Tables 6, 7, and 9, with models fixed for DFM.
Table 9 demonstrates a reduction in prediction error when text data is included. However,
only some instances (M2 Jan20-22; M2 Overall) are statistically significant. In particular,
the benefits of incorporating text data are particularly pronounced during the COVID-19
period.

Interestingly, Tables 2 and 6 also reveal that when text metrics generated by domain-
specific dictionaries (T3, T4, and T5) are included in the model, the most frequently
selected metrics are either T3, which is designed to extract sentiment about macroe-
conomic developments, or TH, which aims to capture economic policy uncertainty. This
suggests that text metrics focused on gauging macroeconomic developments contain valu-
able information to predict GDP.

We also report the best-performing model among the 18 models using only ‘hard’
data and the performance of DFM using only ‘hard’” data in Table 4 and &, respectively.
Comparing these with their ‘hard’ and ‘soft’ counterparts in Table 3 and 7 reveals that
incorporating ‘soft’ data not only supports previous findings that the combination of
‘hard’” and ‘soft’ data enhances DFM performance but also improves nowcasting accuracy

in the ML setting.
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To evaluate the benefit of adding news text data in specific models, we report the
RMSEs in Tables 10, 11 and 12, representing the "normal”, ”COVID-19”, and the entire
periods, respectively. These tables show the RMSEs of the best-performing input com-
binations and their relative RMSEs compared to the baseline inputs using only ‘hard’
and ‘soft’ data. For example, during the period from January 2017 to December 2019,
among M1-type models, the DFM with the input combination (H,S,T0,7T4) exhibited
the best performance, with an RMSE of 0.89 and a ratio of 0.93 compared to the (H,S)
counterpart. However, this reduction in RMSE was not statistically significant according
to Pitarakis (2023).

Again, we observe a consistent reduction in RMSEs across models, particularly notable
in ML models. Interestingly, the magnitude and significance of the reduction in RMSE
are pronounced for models that accommodate a high degree of non-linearity, such as MLP,
LSTM, and CNN. Furthermore, comparing Tables 10 and 11, the reduction in RMSE for
models such as Elastic Net and SVR starts to achieve statistical significance during the
COVID-19 period.

The trajectories of the MLP and DFM for two target quarters, 2019Q2 and 2020Q2,
representing "normal” times and the sharpest GDP decline caused by the pandemic,
respectively, are shown in Figures 3 and 4. Focusing on the target during the COVID-19
period, both predictions generated using ‘hard’ and ‘soft’ data (gray dots) get closer to
the actual value (red dot) as the prediction horizon moves from the M1-type forecast to
the M3-type nowcast as new information becomes available. However, when news data
are available (gray dots), the predictions approach the target much more quickly for both
DFM and MLP.

4.2 Benefits of combining DFM with ML

As shown in Table 2, many of the best-performing models involve the forecast combination
of DFM and ML. Table 13 presents a comparison between the forecast combination of
DFM and ML methods versus DFM alone. Across all forecast horizons (M1, M2, M3)

and time periods, the combination of DFM and ML consistently outperforms DFM alone,
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as indicated by relative RMSEs below 1. This improvement is particularly significant for
longer-horizon nowcasts (M1 and M2 type) across all periods. Notably, the advantage
of ML+DFM remains evident even during the COVID-19 pandemic period, especially
for M1 type nowcasts, where we observe a statistically significant improvement (relative
RMSE of 0.86, significant at the 1% level).

These findings highlight the potential of integrating traditional econometric methods
like DFM with flexible ML approaches. Their complementary strengths appear especially
valuable during economic instability, such as the COVID-19 pandemic, where they may
better capture complex, rapidly changing data relationships. However, the improvement
varies across forecast horizons and periods, suggesting that the advantages of this com-
bined approach may depend on specific economic conditions and the forecasting task at

hand.

5 Conclusion

In this paper, we conduct a nowcasting analysis of Japan’s GDP using machine learning.
We use the machine learning approach because the estimation of the unrestricted mixed-
data sampling (MIDAS) models in our setting involves high-dimensional data. Based on
the unrestricted MIDAS model with macroeconomic indicators, survey-based indicators,
and text information extracted from news articles, we find that text information helps to
enhance nowcasting performance, especially during the COVID-19 period. Furthermore,
the combination of machine learning and dynamic factor models has the potential to
outperform using either method alone.

The use of text data offers benefits beyond improving accuracy. The spread of COVID-
19 caused significant economic fluctuations over short periods due to subsequent lock-
downs. This economic turmoil has underscored the importance of timely macroeconomic
assessments for economists. Traditional hard and survey data, on which economists heav-
ily rely for economic analysis, take several weeks to be released. In contrast, text-based

information can be utilized in real time. Therefore, incorporating news text data is a
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valuable option when the accuracy of existing models is affected by large unexpected

events, such as the COVID-19 pandemic shock.

23



References

1]

[10]

Andreou, E., Ghysels, E. and Kourtellos, A., 2013. Should macroeconomic forecasters
use daily financial data and how?. Journal of Business and Economic Statistics, 31(2),

240-251.

Bai, J. and Ng, S., 2009. Boosting diffusion indices. Journal of Applied Econometrics
24, 607-629.

Banbura M., Giannone D. and Reichlin L. 2011. Nowcasting. In Oxford Handbook on
Economic Forecasting, Clements M.P., Hendry D.F. (eds). Oxford University Press,
Oxford, 193-224.

Banbura, M. and Modugno, M., 2014. Maximum likelihood estimation of factor mod-
els on datasets with arbitrary pattern of missing data. Journal of Applied Econo-

metrics, 29(1), 133-160.

Bragoli, D., 2017. Now-casting the Japanese economy, International Journal of For-

casting, 33, 390-402.

Breiman, L., 1996a. Stacked regressions. Machine Learning, 24, 49-64.
Breiman, L., 1996b. Bagging predictors. Machine Learning 24, 123-140.
Breiman, L., 2001. Random forest. Machine Learning 45(1), 5-32.

Breiman, L., Friedman, J., Stone, C.J. and Olshen, R.A., 1984. Classification and
Regression Trees. Chapman and Hall/CRC, New York, NY.

Chen, J. C., Dunn, A., Hood, K., Driessen, A. and Batch, A., 2022. Off to the
races: a comparison of machine learning and alternative data for predicting economic
indicators. In Abraham, K.G., Jarmin, R.S., Moyer, B., Shapiro, M.D., editors, Big
Data for 21st Century Economic Statistics. University of Chicago Press, Chicago,
IL., 373-402.

24



[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

Chikamatsu, K., Hirakata, N., Kido, Y. and Otaka, K., 2021, Mixed-frequency ap-
proaches to nowcasting GDP: An application to Japan. Japan and the World Econ-
omy, 57, Article 101056.

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., and Bengio,
Y., 2014. Learning phrase representations using RNN encoder-decoder for statisti-

cal machine translation. In Conference on Empirical Methods in Natural Language

Processing (EMNLP 2014).

Clements, M. and Galvao, A., 2008. Macroeconomic forecasting with mixed-
frequency data: forecasting output growth in the United States, Journal of Business

& Economic Statistics 26, 546-554.

Coulombe, P. G., Leroux, M., Stevanovic, D. and Surprenant, S., 2022. How is
machine learning useful for macroeconomic forecasting? Journal of Applied Econo-

metrics, 37(5), 920-964.

Diebold, F. X. and Shin, M., 2018. Machine learning for regularized survey forecast
combination: partially-egalitarian lasso and its derivatives. International Journal of

Forecasting 35(4), 1679-1691.

Ellingsen, J., Larsen, V. H. and Thorsrud, L. A., 2022. News media versus FRED-

MD for macroeconomic forecasting. Journal of Applied Econometrics, 37, 63— 81.

Foroni, C., Marcellino, M. G. and Schumacher, C., 2015. Unrestricted mixed data
sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials. Journal

of the Royal Statistical Society Series A, vol. 178(1), 57-82.

Freund, Y., 1995. Boosting a weak learning algorithm by majority. Information and

Computation 121(2), 256-285.

Ghysels, E., Santa-Clara, P. and Valkanov, R., 2005. There is a risk-return trade-off

after all. Journal of Financial Economics, 76(3), 509-548.

25



[20]

[21]

[22]

[20]

[27]

28]

[29]

Ghysels, E. and Valkanov, R., 2006. Linear time series processes with mixed data

sampling and MIDAS regression models, University of North Carolina, mimeo.

Giannone, D., Lenza, M. and Primiceri, G. E. 2021. Economic predictions with big

data: the illusion of sparsity. Econometrica, 89, 2409-2437.

Giannone, D., Reichlin, L. and Small, D. 2008. Nowcasting GDP and inflation: the
real-time informational content of macroeconomic data releases, Journal of Monetary

Economics 55, 665-676.

Goshima, K., Ishijima, H., Shintani, M. and Yamamoto, H., 2021. Forecasting
Japanese inflation with a news-based leading indicator of economic activities. Studies

in Nonlinear Dynamics & Econometrics, 25(4), 111-133.

Granger, C. W. J. and Ramanathan, R., 1984. Improved methods of combining

forecasts. Journal of Forecasting 3(2), 197-204.

Gu, S., Kelly, B. and Xiu, D., 2020. Empirical asset pricing via machine learning.
Review of Financial Studies, 33(5), 2223-2273.

Goshima, K., Shintani M., and Takamura H., 2022, Sentiment Dictionary for Busi-

ness Cycle Analysis and its Applications, J-stage Shizengengo Shori 29(4), 1233-1253

Hoerl, A. E. and Kennard, R. W., 1970. Ridge regression: biased estimation for

nonorthogonal problems. Technometrics 12(1), 55-67.

Hayashi, F. and Tachi, Y., 2023. Nowcasting Japan’s GDP. Empirical Economics 64,
1699-1735.

Higashiyama, M., Inui K., and Matsumoto Y., 2008. Learning Sentiment of Nouns
from Selectional Preferences of Verbs and Adjectives, Proceedings of the 14th Annual

Meeting of the Association for Natural Language Processing, 584-587.

Ito T., Sakaji H., Tsubouchi K., Izumi K., Yamashita T., 2018. Text-Visualizing

Neural Network Model: Understanding Online Financial Textual Data. In: Phung

26



[31]

[32]

[33]

[34]

[35]

[36]

[38]

[39]

D., Tseng V., Webb G., Ho B., Ganji M., Rashidi L. (eds) Advances in Knowledge
Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science,

Springer, vol 10939, 247-259.

Kalamara, E., Turrell, A., Redl, C., Kapetanios, G. and Kapadia, S., 2022. Making
text count: Economic forecasting using newspaper text. Journal of Applied Econo-

metrics, 37(5), 896- 919.

Kim, H. H. and Swanson, N. R., 2018. Mining big data using parsimonious factor,
machine learning, variable selection and shrinkage methods. International Journal of

Forecasting 34(2), 339-354.

Luciani, M., Pundit, M., Ramayandi, A. and Veronese, G., 2018. Nowcasting In-

donesia. Empirical Economics 55, 597-619.

Maehashi, K. and Shintani, M., 2020. Macroeconomic forecasting using factor mod-
els and machine learning: an application to Japan, Journal of the Japanese and

International Economies, 58, Article 101104.

Mariano, R. S. and Murasawa, Y., 2003. A new coincident index of business cycles
based on monthly and quarterly series. Journal of Applied Econometrics, 18(4), 427-

443.

’

Medeiros, M. C., Vasconcelos, G. F. R., Veiga, A. and Zilberman, E., 2021. Forecast-
ing inflation in a data-rich environment: the benefits of machine learning methods.

Journal of Business and Economic Statistics, 39(1), 98-119.

Pitarakis, J-Y., 2023. A novel approach to predictive accuracy testing in nested

environments. Econometric Theory, First View, 1-44.

Schapire, R. E., 1990. The strength of weak learnability. Machine Learning 5(2),
197-227.

Tibshirani, R., 1996. Regression shrinkage and selection via lasso. Journal of the

Royal Statistical Society: Series B 58(1), 267-288.

27



[40] Wolpert, D.H., 1992. Stacked generalization, Neural Networks, 5(2), 241-259.

[41] Zou, H. and Hastie, T., 2005. Regularization and variable selection via the elastic

net. Journal of the Royal Statistical Society: Series B 67(2), 301-320.

28



"9T "ON Pu® ‘GT "ON ‘€T "ON 10§ (00T— ‘00T) = (7 ‘1) ‘FT "ON Pue gI "ON

107 (0‘00T) = (T°‘Q) 210yM ‘(9T - gI "ON) SOXopuUl UOISNJIp 0} mum 80101 uoryeuriojsuer) o1ysido] Ajdde am ‘(gT(g) US[MOULIDA JO UOISe33NS ) SUIMO[[O]
‘10N 9y} Aq IO 90INOS Y} Aq ISYII0 Pajsnipe A[[eUOSLas oIe SIOYedIPUl [[Y POLIdd 90USIdJOI oY) JO Pus oY) 0} IOLId ST 9)ep 9SBI[OI ) JI SoN[eA
OAT)RSOU o¥R) D ST T, "SARp Jo Ioquunu ul passoldxo Ae[op oseo[dI o1} smots Ae “({)) A[103renb 10 (JN) A[UIUOUL ST S[CRLIBA © IDTIOUYM SMOYS Aduonbal]

ANATOY ATR1I9], Xopu] (Y] ‘UOIIONPOIJ [RLIISNPU] Xopu] :J[] 910N

ouou I N (ogwaeds urewop) 1xo7, (97(0g) SIAR(] pPUR ‘WOO[{ ‘IayRy UO Poseq Xopu] AJUIelIoou() ADI0J oIouody G, &4
ouou I N (oymads urewop) 1xa7, (8T0Z) 'Te 20 ‘03] UO poseq SOLIOW 14X, ‘F.I,  1C
auou I N (ogmads urewop) 1xa, (¢20g) eInweye], pue ‘TURIUIYS “RWIYSOr) UO PSR SOLIJOW X9, ‘€1, 07
auou I N ([erous3) 1xaT, (8007) ojownsye]y pue ‘Mu] ‘@WRATYSLSIH UO paseq SOLIPW I1Xo], ‘g 61
ouou I N (Teroua3) 1xaJ, (900g) eIMWNY() puR ‘MU] ‘“BINWENR], UO Paseq SOLIjoW X9, :T.J, 8T
auou I N (Terouo3) 1xaJ, UNQUITYG TYOTUTR]\ UT UOI}I9S SSOUISTI( O} WOIJ PIjoeIIxo JpI-13 101, LI
\V4 GT- N 1J0S (s1oInjoejnueur) [(] UBNUR], SIOINOY 9T

\V4 GI- N 1508 (sIemjornuew-UOU) [(] ULYUR], SIOMOY G

\V4 8 N 1j0S AoAING 9OUSPYUO)) ISWNSUO)) T

\V4 1- N 1j0S KoAINgG YOOI () Ssoulsng] 820 €]

\v4 6 N 1308 AOAING SIDUDIRAN AWOUODH 7]
301y 7% O prey (1931%)) 1oNpPOIJ d13SoWO(] SSOIX) [T
so1v ¢ N pIeH s)t0dxy ey 0T
so1v Ge N pIeH Alddng spoop rendeny 6
8o1v 6¢ N pIeH $310dX7] S9OIAISG [BIY 8
so1v 9¥ N PIeH SOleS eIy [eoYH L
(0 A v/ GP N pIey (seo1AT0s ssoulsnq Jursuel peoiq) VI 9
o1y cP N prey (seo1AT0s RUOSIOd TRIYULSSO UOU FUISUel pROIq) V1] q
301 v a7 N pIeH (seor1ates TeuosIad [erjuesse Surdurl prolq) VI I iz
o1 v cy N prey] (seo1ates Teuostad Surduer peolq) VI ¢
sorv 62 N prey (spoos wonpord [euy) 411 ¢
gorv 62 N preq (spood puewnp feuy) 411 T
uLiojsuel], Ae[o(] Aouenboiq K10399€0)) o[qeLIRA  ON

juamIyea) ejep pue uorydrmsap eje( T 9[qelL

29



Table 2. Best models

Jan17-Decl9 Jan20-Dec22 Overall
Input Model RMSE  Input Model RMSE  Input Model RMSE
M1 H,S, T2 Istm 0.556 H,S, T1, T5 con+dfm 1.687 H, S, T1, T5 cnn+dfm 1.300
M2 H,S,T0, T5 cnn+dfm 0.486 H, S, T2, T3 svr+dfm 0.724 H, S, T0, T5 cnn+dfm 0.705
M3 H,S svr+dfm  0.349  H, S, T1,T5 cnnt+dfm 0.685 H, S, T1, T5 cnntdfm 0.594

Note: Hereafter, plus appears in the column Model denotes forecast combination by unweighted
mean of the two models.

Table 3. Best models when inputs fixed at Hard and Soft indicators

Jan17-Decl19 Jan20-Dec22 Overall
Input Model RMSE Input Model RMSE Input Model RMSE
M1 H,S mlp 0.743 H,S enet+dfm 1.780 H,S enet+dfm 1.417
M2 H,S dfm 0771  H,S cnn+dfm 0952 H,S cnon+dfm 0.902
M3 H,S svr+dfm 0349 H,S dfm 0.797 H,S dfm 0.620

Table 4. Best models when inputs fixed at Hard indicators

Jan17-Decl9 Jan20-Dec22 Overall
Input  Model RMSE Input Model RMSE Input Model RMSE
M1 H cnn 0.765 H Istm 2.697 H Istm 1.983
M2 H cnn 0.724 H dfm 1.305 H dfm 1.115

M3 H svr+dfm 0.349 H mean 4 0.959 H mean 4 0.734

Note: mean_4 denotes forecast combination by unweighted mean of enet, rf, mlp, and

dfm.

Table 5. Relative accuracy of hard/soft/news inputs to hard/soft inputs

Janl17-Dec19 Jan20-Dec22 Overall
relative RMSE statistic  relative RMSE statistic relative RMSE  statistic
M1 0.75 3.72%** 0.95 1.06 0.92 1.68**
M2 0.63 14.27*** 0.76 8.38%** 0.78 8.90***
M3 1.00 0.30 0.86 1.47* 0.96 -1.92

Note: This table compares the results from Table 2 and Table 3. The relative RMSE columns
show the ratio of RMSEs, and the statistic columns report the test statistic St (7o, )\8) in
Pitarakis (2023) of the null that the predictions of the best model using only H and S have
better accuracy compared to the predictions of the best model when the input is unrestricted.
We set (0 = 0.8, )9 = 1) in line with the guideline provided in Pitarakis (2023).

*10% significance level. **5% significance level. ***1% significance level.
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Table 6. Best models for Dynamic Factor Model

Jan17-Dec19 Jan20-Dec22 Overall
Input Model RMSE Input Model RMSE Input Model RMSE
M1 H,S,To, T4 dfm 0.890 H,S, TO, T5 dfm 1.967 H, S, TO, T5 dfm 1.534
M2 H,S, T3 dfm 0.762 H, S, TO, T5 dfm 0.755  H, S, T0, T5 dfm 0.766
M3 H,S, TO dfm 0.364 H,S, T1 dfm 0.791 H, S, T1 dfm 0.617

Table 7. Best models for Dynamic Factor Model when inputs fixed at Hard
and Soft indicators

Jan17-Dec19 Jan20-Dec22 Overall
Input Model RMSE Input Model RMSE Input Model RMSE

M1 H,S dfm 0958 H,S dfm 198 H,S dfm  1.559
M2 H,S dfm 0771 H,S dfm 1018 H,S dfm  0.903
M3 H,S dfm 0368 H, S dfm 0797 H,S dfm  0.620

Table 8. Best models for Dynamic Factor Model when inputs fixed at Hard
indicators

Janl7-Dec19 Jan20-Dec22 Overall
Input Model RMSE Input Model RMSE Input Model RMSE

Ml H dfm 0965 H dfm 2794 H dfm 2.090
M2 H dfm 0.886 H dfm 1.306 H dfm 1.115
M3 H dfm 0.363 H dfm 1.041 H dfm 0.779

Table 9. Relative accuracy of hard/soft /news inputs to hard/soft inputs for
DFM

Janl7-Decl19 Jan20-Dec22 Overall
relative RMSE statistic relative RMSE statistic relative RMSE  statistic
M1 0.93 -1.58 0.99 0.48 0.98 0.78
M2 0.99 -1.63 0.74 8.91*** 0.85 5.64***
M3 0.99 -0.01 0.99 -1.32 099 -1.94

Note: This table compares the results from Table 6 and Table 7. The relative RMSE
columns show the ratio of RMSEs, and the statistic columns report the test statistic
St(79,A)) in Pitarakis (2023) of the null that the predictions of the best model using
only H and S have the same accuracy as the predictions of the best model when the input
is unrestricted. We set (1o = 0.8, ) = 1) in line with the guideline provided in Pitarakis

(2023).
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Table 10. Best input combination (versus hard/soft) during Jan17-Dec19

Input Model RMSE relative RMSE statistic
M1 H,S,TO0, T4 dfm 0.89 0.93 -1.58
M2 H,S, T3 dfm 0.76 099 -1.63
M3 H, S, TO dfm 0.36 0.99 -0.01
M1 H, S, TO, T3 enet 0.89 097 -1.68
M2 H, S, TO enet 0.91 1.00 -1.89
M3 H, S, TO, T5 enet 0.43 0.97 0.86
M1 H,S, T2 SVr 0.94 0.99 -191
M2 H,S, T3 SVr 0.94 1.00 -1.95
M3 H,S SVr 0.37 1.00 0.56
M1 H,S, TOo, T3 =f 0.85 0.89 -1.27
M2 H,S, T2 rf 0.86 095 -1.74
M3 H,S,T1, T4 «f 0.42 0.84 5.84***
M1 H,S, TO lgbm 0.95 0.87 -0.42
M2 H, S, TO lgbm 0.84 0.67 T7.51%**
M3 H,S,T1, T5 Igbm 0.59 0.83 9.35%**
M1 H,S, TO mlp 0.58 0.77 3.06%**
M2 H,S, T2, T4 mlp 0.64 0.64 T7.17F**
M3 H,S,T5 mlp 0.53 0.80 9.04***
M1 H,S, T2 Istm 0.56 0.72 6.07*F**
M2 H,S, T0, T3 Istm 0.72 0.83 0.11
M3 H,S, T2 Istm 0.44 0.72 6.36%**
M1 H,S, T3 cnn 0.59 0.68 18.59***
M2 H,S,TO, T3 cnn 0.66 0.67 12.84%**
M3 H,S,T5 cnn 0.57 0.79 8.73%**

Note: The relative RMSE columns show the ratio of RMSE to the
H, S counterpart
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Table 11. Best input combination (versus hard/soft) during Jan20-Dec22

Input Model RMSE relative RMSE statistic
M1 H, S, TO, T5 dfm 1.97 0.99 0.48
M2 H,S, TO, T5 dfm 0.75 0.74 8.91***
M3 H,S, T1 dfm 0.79 0.99 -1.32
M1 H, S, TO, T3 enet 2.01 0.83  3.08%***
M2 H, S, T0 enet 1.25 0.94 2.27%*
M3 H,S, T1, T4 enet 1.17 0.93 1.82%*
M1 H, S, TO, T4 svr 2.29 0.72  6.33***
M2 H,S, T4 SV 0.95 0.37  74.93***
M3 H, S, T5 Svr 1.18 0.76 6.26%**
M1 H,S, T2, T3 rf 2.97 0.96 0.73
M2 H,S, T2 rf 2.44 0.99 0.35
M3 H,S rf 2.34 1.00 0.26
M1 H, S, TO, T5 Igbm 2.99 0.94 1.42%
M2 H,S,Tl, T4 lghm 2.46 0.96 1.17
M3 H,S, T3 lebm 2.55 0.93 2.17%*
M1 H, S, TO, T3 mlp 2.51 0.92 2.72%**
M2 H,S, T1, T3 mlp 0.99 0.50 64.34%**
M3 H,S, TO, T3 mlp 1.06 0.69 17.81***
M1 H, S, T5 Istm 2.42 0.86 2.25%*
M2 H,S, TO, T3 Istm 2.21 0.87 1.91**
M3 H,S,T1, T4 Istm 1.88 0.91 1.55*
M1 H,S,T1, T5 cnn 1.74 0.90 2.24%*
M2 H,S, T1, T3 cnn 1.16 0.98 1.38*
M3 H,S,T1, T3 cnn 1.07 0.79  12.91%%*

Note: The relative RMSE columns show the ratio of RMSE to the
H, S counterpart
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Table 12. Best input combination (versus hard/soft) for the entire sample
(Jan17-Dec22)

Input Model RMSE relative RMSE statistic
M1 H,S, TO, T5 dfm 1.53 0.98 0.78
M2 H,S, TO, T5 dfm 0.77 0.85 5.64%**
M3 H,S,Ti1 dfm 0.62 0.99 -1.94
M1 H, S, TO, T3 enet 1.56 0.85 2.68%**
M2 H,S, TO enet 1.10 0.96 1.37*
M3 H,S, T1, T4 enet 0.88 0.94 0.91
M1 H, S, TO, T4 svr 1.75 0.75  5.44%**
M2 H,S, T4 Svr 0.95 0.49 33.92%**
M3 H, S, T5 SVIr 0.88 0.78 6.17***
M1 H,S, T2, T3 rf 2.21 097 0.9
M2 H,S, T2 rf 1.83 0.99 0.61
M3 H,S rf 1.69 1.00 0.36
M1 H, S, TO lgbhm 2.23 0.94 1.55%
M2 H,S, T1, T4 Igbm 1.92 0.95 1.56*
M3 H,S, T3 lghm 1.86 0.93 0.31
M1 H,S, TO, T3 mlp 1.86 0.93 2.25%*
M2 H,S, T1, T3 mlp 1.04 0.66 18.68***
M3 H,S, TO, T3 mlp 0.89 0.76 11.09%***
M1 H, S, T5 Istm 1.78 0.87 2.44%**
M2 H,S,T0, T3 Istm 1.64 0.87 2.28%*
M3 H,S, T1, T4 Istm 1.38 0.90 1.83**
M1 H,S, T1,T5 cnn 1.32 0.89 3.08%**
M2 H,S, T1, T3 cnn 1.01 0.93  3.56%***
M3 H,S, T1, T3 cnn 0.89 0.82 8.38***

Note: The relative RMSE columns show the ratio of RMSE to the
H, S counterpart
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Table 13. Relative accuracy of forecast combination of DFM and ML to DFM

Janl7-Dec19 Jan20-Dec22 Overall
relative RMSE statistic  relative RMSE statistic relative RMSE  statistic
M1 0.72 0.92 0.86 2.72%** 0.85 3.36%**
M2 0.64 12.01%** 0.96 1.46%* 0.92 2.87***
M3 0.98 0.52 0.86 1.10 0.92 -0.66

Note: This table compares the results of two model forms: ml+dfm and dfm. For each
type (M1, M2, M3) and period combination, we compare the best model among all input
patterns that takes the form of forecast combination with dfm, and the best model among
all input patterns using dfm alone.

The relative RMSE columns show the ratio of RMSEs, and the statistic columns report
the test statistic S7(79, Ay) in Pitarakis (2023) of the null that the predictions of dfm have
better accuracy compared to the ml+dfm. We set (19 = 0.8,A) = 1) in line with the
guideline provided in Pitarakis (2023).

*10% significance level. **5% significance level. ***1% significance level.

Figure 1. GDP and selected hard data
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Note: Shaded regions indicate recessions.
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Figure 2. Text-based indicators
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Note: All series are standardized for display purpose. Shaded regions indicate recessions.
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Figure 3. Predictions of MLP by input
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Note: This figure tracks the predictions produced by MLP with different inputs.
Predictions are made at the first day of each month.
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Figure 4. Predictions of DFM by input
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Note: This figure tracks the predictions produced by DFM with different inputs.
Predictions are made at the first day of each month.
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