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Abstract

We conduct a nowcasting analysis on Japan’s GDP using machine learning. We
employ machine learning approaches because the estimation of the mixed-data sam-
pling (MIDAS) models without parameter restriction, in the presence of text in-
formation extracted from newspapers potentially involves high-dimensional data.
Based on the unrestricted MIDAS model with macroeconomic indicators, survey-
based indicators, and text information, we find that text information helps improve
nowcasting performance during the COVID-19 period. In addition, the forecasting
combination of machine learning and dynamic factor model has the potential to
outperform using either method alone.
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1 Introduction

We employ machine learning methods to estimate an unrestricted mixed-data sampling

model for nowcasting the growth rate of Japan’s gross domestic product (GDP). Our set

of predictors includes ‘hard’ data, consisting of basic monthly and quarterly macroeco-

nomic variables, survey-based indicators (‘soft’ data), and news data constructed from

text information in news articles. Since the target variable is quarterly data and the

predictors are both monthly and quarterly data, our approach involves estimating mixed

frequency data models. We use machine learning methods because they do not require

any parametric restrictions on the weight function in mixed-data sampling models (U-

MIDAS).

The machine learning approach is also advantageous for incorporating text informa-

tion into the forecast model, as such predictors can be high-dimensional. This contrasts

with the work of Hayashi and Tachi (2023), who use the maximum likelihood method

to estimate the dynamic factor model (DFM) for nowcasting the growth rate of Japan’s

GDP based on ‘hard’ and ‘soft’ data.

There are two main methods for handling mixed-frequency data when estimating the

model. In the first method, low-frequency data are converted into high-frequency data

by augmenting the low-frequency observations. The model is then estimated using the

high-frequency data. For example, in the case of stock and price variables, a hypothetical

high-frequency observed value is generated by linear interpolation of observed values. For

flow variables and rates of change, the values can be divided equally into each period.

The maximum likelihood estimation of DFM, employed by Hayashi and Tachi (2023),

falls under this method, as the high-frequency observations are treated as latent variables

in the state space model and their values are estimated.

In the second method, high-frequency data are aggregated and all variables are ex-

pressed in terms of low-frequency data. The prediction using MIDAS models, originally

proposed by Ghysels, Santa-Clara, and Valkanov (2005), falls under this method. In par-

ticular, we employ the unrestricted MIDAS (U-MIDAS) model, as considered by Foroni,

Marcellino, and Schumacher (2015), and estimate the model using various types of ma-
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chine learning. To nowcast the Japanese economy, the U-MIDAS model was used by

Chikamatsu et al. (2021). However, they did not incorporate text information in their

analysis.

Our paper is closely related to the literature on nowcasting and forecasting macroe-

conomic variables using text data. For example, Goshima et al. (2021) used newspaper

article data and found that text information is useful in forecasting Japanese inflation.

Ellingsen, Larsen, and Thorsrud (2022) found that news-based data contains valuable

information not captured by hard economic data when forecasting US consumption.

Kalamara et al. (2022) claimed that newspaper text data are useful in forecasting key

macroeconomic variables in the UK.

Our analysis is also related to an increasing number of studies that employ machine

learning methods in macroeconomic forecasting. For example, Diebold and Shin (2019)

employed Lasso and Ridge regression and their extensions for forecasting Euro area GDP.

Giannone, Lenza, and Primiceri (2021) applied a Bayesian forecasting framework that

included Lasso, Ridge, and Elastic Net to hard macroeconomic data, among other series,

to evaluate the usefulness of sparse modeling.

The effectiveness of ensemble machine learning methods based on regression trees,

such as random forests, was emphasized by Medeiros et al. (2021) and Chen et al.

(2022). Bai and Ng (2009) examined the effectiveness of boosting in forecasting inflation,

interest rates, industrial production, employment, and the unemployment rate using a

large set of US macroeconomic data.

Furthermore, Kim and Swanson (2018), Gu, Kelly, and Xiu (2020), Maehashi and

Shintani (2020), and Coulombe et al. (2022) conducted horse race analyses using various

machine learning methods to forecast macroeconomic and financial variables.

The rest of the paper is organized as follows. Section 2 introduces the model for mixed

frequency data and the machine learning methods used in the analysis. In Section 3, we

describe the data and procedures for evaluating nowcast performance. Section 4 presents

the main empirical results, followed by concluding remarks in Section 5.
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2 Mixed frequency data and machine learning

2.1 Unrestricted MIDAS model

We consider the problem of predicting the quarterly target variable using monthly pre-

dictors. In practice, we need to incorporate the fact that the timing of the release differs

across the predictors. This issue is often referred to as the ragged-edge data problem (see

Bańbura, Giannone and Reichlin, 2011). For notational simplicity, we assume that the

one predictor, xt, becomes available exactly one month after the end of reference month,

and the other predictor, zt, is observed in the same month. Most of the hard data we

use in the analysis are represented by the former type predictor xt. In contrast, news

data and financial market series can be represented by the latter type of predictor zt.

While we use multiple predictors with more than two types of data release timing in the

empirical analysis, the following discussion can be extended with a simple modification.

Since the predictor is observed monthly, we denote the time index of predictor variable

xt and zt to take multiples of 1/3. On the other hand, since the target variable is observed

quarterly, we let its time subscript of yt to take integer values. The mixed-data sampling

(MIDAS) model for h-period-ahead forecast of yt using zt as a predictor is given by:

yt+h = µh,0 + βh,1

pz−1∑
j=0

wj(θ)L
j/3zt + εt+h (1)

where wj(θ) = eθ1j+···+θqjq/(
∑pz

i=0e
θ1i+···+θqiq) is the weighted moving average weight func-

tion, θ = (θ1, ...θq) are the parameters of the weight function. For example, in Ghy-

sels, Santa-Clara, and Valkanov (2005), q = 2 and the weight function wj(θ1, θ2) =

eθ1j+θ2j2/(
∑pz−1

i=0 eθ1i+θ2i2) is employed.1 Since the sum of the weights is given by
∑pz−1

i=0 wj(θ) =

1, with the choice of pz = 3 and θ1 = · · · = θq = 0, we can confirm xQ
t corresponds to

the 3-month average. In the MIDAS model, since the coefficients (µh, βh,1) of the (1)

equation and the weight function parameters θ = (θ1, ..., θq) are unknown, they are esti-

mated simultaneously using nonlinear least squares. The benchmark MIDAS regression

1See also Ghysels and Valkanov (2006) and Clements and Galvão (2008).
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model (1) can be extended to the model with the lagged dependent variables as additional

predictors given by

yt+h = µh +

py−1∑
j=0

ϕh,jL
jyt + βh,1

pz−1∑
j=0

wj(θ)L
j/3zt + εt+h. (2)

Andreou, Ghysels and Kourtellos (2013) refer (2) to the ADL-MIDAS regression model.

By expanding equations (1) and (2), we obtain the unrestricted MIDAS (U-MIDAS)

models given by

yt+h = µh +

pz−1∑
j=0

δh,jL
j/3zt + εt+h (3)

and

yt+h = µh +

py−1∑
j=0

ϕh,jL
jyt +

pz−1∑
j=0

δh,jL
j/3zt + εt+h, (4)

respectively.

Note that the number of parameters of the U-MIDAS model in equation (3) is pz + 1

while the number of parameters of the MIDAS model in equation (1) is q+2. For the case

of N monthly predictors, the number of parameters Npz +1 can become large for a large

N . However, a U-MIDAS model with a large number of parameters can be estimated by

using machine learning procedures explained in the next subsection.

It should also be note that for the same target quarterly GDP, available observations

differ depending on whether the timing of nowcast (or forecast) is either at the first,

second or third month of a quarter. Such a different information structures, along with

the ragged-edge problem of additional predictor xt, can be incorporated by adjusting the

index j on the coefficient of each predictor in (3) and (4) to begin with ℓ(> 0) instead of

0 where ℓ represents the information delay.

In summary, we consider the following three types of the U-MIDAS model to construct

the nowcast (h = 0) of Japanese GDP. Without the loss of generality, predictors are

denoted by yt for the lagged quarterly GDP; xt for monthly variables with one month

information delay (most hard data); and zt for monthly variables with no information

delay (news data and policy rate).
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1. M1 (End-of-month 1) type model

yt+h = µh +

py+1∑
j=2

ϕh,jL
jyt +

px+2∑
j=3

δh,jL
j/3xt +

pz+1∑
j=2

γh,jL
j/3zt + εt+h (5)

2. M2 (End-of-Month 2) type model

yt+h = µh +

py∑
j=1

ϕh,jL
jyt +

px+1∑
j=2

δh,jL
j/3xt +

pz∑
j=1

γh,jL
j/3zt + εt+h (6)

3. M3 (End-of-Month 3) type model

yt+h = µh +

py∑
j=1

ϕh,jL
jyt +

px∑
j=1

δh,jL
j/3xt +

pz−1∑
j=0

γh,jL
j/3zt + εt+h (7)

Here, M1 type model is estimated only using observations from February 1, May 1,

August 1, and November 1 in each year. Similarly, M2 type model uses observations

from March 1, June 1, September 1, and December 1 in each year, while M3 type model

uses observations from January 1, April 1, July 1, and October 1 in each year. For the

lag length parameters, we impose the following restrictions: pz ≥ 1 for M1 type model;

px ≥ 1 and pz ≥ 2 for M2 type model; and px ≥ 2 and pz ≥ 3 for M3 type model.

2.2 Machine learning

We consider a set of machine learning (ML) methods to estimate unrestricted MIDAS (U-

MIDAS) models. We divide the machine learning methods available for macroeconomic

forecasting into four major types: (i) regularized least squares estimators, (ii) support

vector regression, (iii) tree-based methods, and (iv) neural networks. Below, we describe

each type separately.

2.2.1 Regularized least squares estimator

The first type is regularized least squares estimators, which add a penalty term, or reg-

ularization term, to the objective function to prevent overfitting. In this paper, we focus
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on the elastic net estimator.

Consider a simple linear regression model with a target variable yt+h and predictors

Xt = [x1t, x2t, ...xNt]

yt+h = β0 +
∑N

i=1βixit + εt+h (8)

Minimizing the residual sum of squares yields the OLS estimator of β = [β0, β1, ...βN ]

given by

β̂OLS = argmin
∑T

t=1

(
yt+h − β0 −

∑N
i=1βixit

)2

. (9)

The elastic net estimator uses a linear combination of the L1 norm
∑N

i=1 |βi| and the

L2 norm, defined as follows:

β̂enet = argmin

[∑T
t=1

(
yt+h − β0 −

∑N
i=1βixit

)2

+ ωλ
∑N

i=1|βi|+ (1− ω)λ
∑N

i=1β
2
i

]
.

(10)

The additional adjustment parameter ω controls the relative weight between the L1

norm penalty and the L2 norm penalty. Two adjustment parameters, ω and λ, can be

selected simultaneously to minimize the MSE calculated by K-fold cross-validation.

By combining the penalties of the L1 and L2 norms, elastic net can handle multi-

collinearity well by shrinking coefficients and also perform variable selection by setting

some coefficients to zero.

2.2.2 Support Vector Regression (SVR)

Support Vector Regression (SVR) is designed to fit a regression model within an allowable

error margin ϵ, while maximizing model fit. It employs kernel functions, typically the

Radial Basis Function (RBF), to handle nonlinear relationships. The model can be

described by:

f(x) =
n∑

i=1

(αi − α∗
i )K(x, xi) + b (11)

where αi and α∗
i are dual coefficients, K(x, xi) is the kernel function, and b is the bias.

The RBF kernel is defined as:
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K(x, xi) = exp(−γ∥x− xi∥2) (12)

where γ determines the kernel’s width, controlling the influence of each support vector.

SVR’s objective is to minimize:

1

2

n∑
i=1

(αi − α∗
i )

2K(xi, xi) + C
n∑

i=1

max(0, |yi − f(xi)| − ϵ) (13)

where C is the regularization parameter. This configuration penalizes deviations

larger than ϵ, ensuring the model is both flat and accurate within the epsilon margin.

SVR provides a robust alternative to traditional regression methods, particularly use-

ful for datasets with complex nonlinear relationships or when the number of predictors

exceeds the number of observations.

2.2.3 Random Forest and Boosting

The third type of ML methods is regression trees combined with ensemble learning. A

regression tree with M terminal nodes can be written as

yt+h =
M∑

m=1

θm1{Xt∈Rm} + εt+h (14)

where 1{·} is the indicator function, Rm is the partition of the range of Xt, and θm is the

mean of yt conditional on Xt ∈ Rm.

Regression trees accommodate non-linearities but are prone to overfitting. Ensemble

methods mitigate these issues and are useful in macroeconomic forecasting due to their

ability to capture complex relationships and robustness to outliers in economic data.

Random forests, introduced by Breiman (2001), use bootstrap aggregating (bagging)

and reduce correlation between tree predictions. The final forecast is the average of all

bootstrap forecasts: B−1
∑B

b=1 ŷ
(b)
t+h, where only a subset of predictors are used at each

node.

Boosting, introduced by Schapire (1990) and Freund (1995), estimates models sequen-
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tially. At each stage s, the model is updated as:

gs(Xt) = gs−1(Xt) + η

Ms∑
m=1

θsm1{Xt∈Rsm} (15)

where η is the learning rate and the new tree is estimated using the previous residual.

We employ LightGBM for its computational efficiency, which is particularly beneficial

when dealing with large-scale economic datasets.

2.2.4 Neural Networks

The fourth type covers models based on neural networks: Multi-Layer Perceptrons (MLPs),

Convolutional Neural Networks (CNNs), and Long Short-TermMemory networks (LSTMs).

MLPs are basic neural networks with interconnected layers. CNNs, adapted from image

processing, use convolutional layers to identify important features in time series. LSTMs

address long-term dependencies in sequence data.

For an MLP with one intermediate layer, the h-period-ahead forecast model is:

yt+h =

q∑
j=1

θjhj(Xt) + b+ εt+h (16)

hj(Xt) = σ(w′
jXt + bj) (17)

where Xt and wj are N × 1 vectors, σ is the activation function, hj is the hidden unit,

and q is the number of hidden units.

A n+ 1-layer MLP (with n intermediate layers) is given by:

yt+h = θ(n)′h(n) + b(n) + εt+h (18)

h(n) = [σ(θ
(n−1)′
1 h(n−1) + b

(n−1)
1 ), ..., σ(θ(n−1)′

qn h(n−1) + b(n−1)
qn )]′

...

h(1) = [σ(w′
1Xt + b1), ..., σ(w

′
q1
Xt + bq1)]

′
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where h(ℓ) is the vector of hidden units in the ℓ-th layer, θ
(ℓ)
k are weight vectors, and b

(ℓ)
k

are bias terms.

Common activation functions are sigmoid σ(z) = 1
1+e−z , tanh σ(z) = ez−e−z

ez+e−z , and

ReLU σ(z) = max(0, z), where z is the input.2

CNNs replace the MLP’s intermediate layer with convolutional and pooling layers.

The convolutional layer applies a locally weighted sum using a filter, while the pooling

layer reduces the output dimension. This structure is particularly useful for analyzing

time series data like macroeconomic variables.

Let us set the forecast horizon h at 1 and assume that monthly time series {yt+1, xt}Tt=1

is available, where yt+1 is a target variable and xt is a single predictor. By introducing non-

linearity into a simple distributed lag model of order 12, yt+1 = µ+
∑11

j=0 δjxt−j+εt+1, and

extending to MLP with q number of hidden units, we obtain yt+1 =
∑q

j=1 θjhj + b+ εt+1

where hj = σ(w′
jXt + bj) is a hidden unit and Xt = (xt, xt−1, ., xt−11)

′ is the inputs.

Since the total number of parameters is q × (12 + 1) + q + 1, the number of param-

eters in MLP tends to be large even when the number of units is not so large. Let

us now replace the intermediate layer of this MLP with the convolutional and pool-

ing layers of the CNN. In the convolution layer, the locally weighted moving average

of the 12 lag variables is normalized by the activation function. The weight of this

local weighted average is called the filter, and its length is called the filter size. The

usual filter size is an odd number, for example, for 3 months, the weighted moving av-

erage is calculated using the weights w = (w1, w2, w3)
′ (and the bias term b). In this

case, the filter will be out of the data range at the endpoints, but this is handled by

substituting 0 or not calculating a weighted moving average. For example, when the

observed value of the target variable y13 at t = 12 and the observed value of the predic-

tor variable X12 = (x12, x11, ..., x1)
′, we have {h(c)

1 , h
(c)
2 , ..., h

(c)
10 } = {σ(w′(x12, x11, x10)

′ +

b), σ(w′(x11, x10, x9)
′ + b), ..., σ(w′(x3, x2, x1)

′ + b)} if the endpoints are not calculated.

Dimension of the 10 output values of the convolution layer are reduced in the sub-

2Traditionally, sigmoid functions were used for shallow networks. However, in deep learning, sigmoid
functions can lead to vanishing gradients. Tanh functions reduce this problem, while ReLU functions
avoid it entirely.
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sequent pooling layer. For example, in the case of 5-month max pooling, we have

{h(p)
1 , h

(p)
2 } = {max(h

(c)
1 , h

(c)
2 , h

(c)
3 , h

(c)
4 , h

(c)
5 ),max(h

(c)
6 , h

(c)
7 , h

(c)
8 , h

(c)
9 , h

(c)
10 )}. Likewise, for

5-month average pooling, we have{h(p)
1 , h

(p)
2 } = {5−1

∑5
j=1h

(c)
j , 5−1

∑10
j=6h

(c)
j }. The two

output values of the pooling layer are combined into the observed target variable in the

subsequent fully-connected layer by y13 =
∑2

j=1 θjh
(p)
j + b0 + ε13. When training CNNs,

parameters are estimated by back propagation as in MLP using observed values from

t = 12 to t = T . As described above, convolution using only current and past values

in terms of the objective variable is called causal convolution. In this CNN, the total

number of parameters to be estimated is 3 + 1 + 2 + 1 = 7, because the parameters are

the weight of one filter w and the bias term b in the convolution layer, the weight of all

coupling layers {θj}2j=1 and the bias term b0 ( There are no parameters to be estimated in

the pooling layer). This is a significant reduction compared to the number of parameters

in the MLP when q = 3, for example, which is 3× (12 + 1) + 3 + 1 = 43.

As a third neural network, we consider the recurrent neural network (RNN). Using a

simple RNN, the forecast model can be given by

yt+h =

q∑
j=1

θjhjt + b+ εt+h (19)

hjt = σ(w′
jXt +

q∑
k=1

θjkhkt−1 + bj) (20)

where {hjt−1}qj=1 represents the q hidden units of the middle layer in period t and σ is the

activation function. The time-series structure is introduced into the RNN by the adding

past information {hkt−1}qk=1 along with the usual N × 1 predictor variable Xt as input

to the intermediate layer (20). Hochreiter and Schmidhuber (1997) introduced a gating

mechanism called long short-term memory (LSTM) to RNNs. The state of the LSTM is

represented by an intermediate layer ht and a memory cell Ct, and the information flow is

controlled by each gate. For simplicity, consider the case of one-dimensional intermediate
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layer so that the input gate, forget gate, and output gate can be written as

it = σg(w
′
i(X

′
t, ht−1)

′ + bi) (21)

ft = σg(w
′
f (X

′
t, ht−1)

′ + bf ) (22)

ot = σg(w
′
o(X

′
t, ht−1)

′ + bo) (23)

where ht is the (scalar) hidden unit of the intermediate layer in period t, bi, bf , and bo

are bias terms, wi, wf , and wo are (N +1)×1 vectors of weights, σg is the gate activation

function, usually a sigmoid function. If we also assume one-dimensional memory cell, the

current Ct is given by

Ct = ft × Ct−1 + it × σ(w′
c(X

′
t, ht−1) + bc) (24)

and the current ht is given by

ht = ot × σ(Ct). (25)

The forecast model is given by yt+h = θht+ b+εt+h where bc and b are bias terms, wc is a

(N +1)×1 vector of weights, θ is a scalar weight, and σ is an activation function, usually

the tanh function. In (24), how much new information σ(w′
c(X

′
t, ht−1)

′ + bc) is added to

the storage cell Ct is controlled by the input gate it and how much past information Ct−1

is left is controlled by the forget gate ft. The output (25) expression of the intermediate

layer is also controlled by the output gate ot. Intuitively, by keeping the values of these

gates within appropriate ranges, the model can avoid the vanishing gradient problem.

2.3 Dynamic factor models

The performance of nowcasting and forecasting based on machine learning methods is

compared with those based on DFM. Following Mariano and Murasawa (2003), Giannone,

Reichlin and Small (2008), Bańbura and Modugno (2014) and Luciani et al. (2018)

among others, we estimate DFM by the maximum likelihood method allowing for mixed

frequency data. To review this model, for simplicity, assume that the two series of monthly
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data {y∗tm , xtm}, with a new monthly time index tm = 1, ...Tm, are described by a DFM

given by

 y∗tm

xtm

 =

 λ1

λ2

 ftm +

 e1tm

e2tm


where λi, for i = 1, 2, is a factor loading, ftm is a scalar common factor which follows an

AR model

ftm =

pf∑
j=1

ϕjftm−j + εtm (26)

and eitm , for i = 1, 2, is an idiosyncratic error term which follows an AR model

eitm =

pi∑
j=1

ρjeitm−j + εitm . (27)

Let us now assume that xtm is observed monthly, but only

ytm = y∗tm + y∗tm−1 + y∗tm−2 (28)

is observed for each end of the quarter. That is, ytm is observed only when tm = 3t, but

is a missing observation when tm = 3t − 1 and tm = 3t − 2. Therefore, for tm = 3t, the

measurement equation is given by

 xtm

ytm

 =

 xtm

y∗tm + y∗tm−1 + y∗tm−2

 =

 λ1 0 0 1 0 0 0

λ2 λ2 λ2 0 1 1 1





ftm

ftm−1

ftm−2

e1tm

e2tm

e2tm−1

e2tm−2


In our analysis, we use both monthly hard data and news data for xtm and forecast ytm

using year-on-year growth rate transformation instead of (28).
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3 Data and procedures

3.1 Predictors

3.1.1 Hard data: macroeconomic indicators

We use a subset of the data adopted in the New Indices of Business Conditions, which the

Cabinet Office claims better captures gross product. In the dataset, we exclude nominal

series as well as construction statistics, which have been subject to overestimation and

considered unreliable by some economists.

As a set of predictors from hard data, we use 10 monthly macroeconomic indicators

and lagged quarterly GDP growth rate (Table 1). These predictors are a subset of the data

adopted in the New Indices of Business Conditions, which the Cabinet Office claims better

captures gross product. In the dataset, we exclude nominal series as well as construction

statistics, which have been subject to overestimation and considered unreliable by some

economists. For each variable, the delay of release in terms of the number of days is

shown in the ”Delay” column of Table 1.

3.1.2 Soft data: survey-based indicators

Previous studies, such as Bragoli (2017) and Hayashi and Tachi (2023), have demon-

strated that survey-based (‘soft’) indicators are valuable alongside standard macroeco-

nomic (‘hard’) indicators in a Dynamic Factor Model (DFM) framework. Consequently,

we incorporate survey-based indicators in our nowcasting exercise. Table 1 lists all survey-

based indicators used in this study. Unlike Hayashi and Tachi (2023), who used the

Tankan Survey compiled by the Bank of Japan, we employ Reuters’ Tankan Survey. This

survey is designed to capture business sentiment and provides similar information to the

Bank of Japan version. We prefer the Reuters survey because it offers monthly data,

whereas the Bank of Japan version is available only quarterly.
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3.1.3 News data

News data from January 1992 to December 2022 are extracted from the business section

in Mainichi Shimbun. Here, one document corresponds to a single article and our corpus

consists of all articles. The total number of articles is approximately 300 thousands. On

average, there are 1,200 articles available a month. We construct two types of text-based

indicators. The release delays for both types of indicators are set to 1.

Text metrics based on term frequency

The first approach is based on term frequency. We first pick up the most frequent 1000

nouns from articles up to December 2016 as the vocabulary to calculate term frequency

(tf) for each article. The tf of a term wj in a document di, adjusted for document length,

is defined as

tf(wj, di) =
the number of wj appears in document di
total number of words in document di

By calculating tf for each article (document), and then averaging the tf for all articles

in each month yields a monthly observation of tf series for a particular term. Based on

these tf series, we then calculate the term frequency inverse document frequency (tf-idf)

defined as follows:

tf -idf(wj, di)t = tf(wj, di) · idf(wj, Dt), where Dt is the corpus , and

idf(wj, Dt) = log
the number of documents inDt

the number of documents that contain wj inDt

+ 1

The inverse document frequency idf(wj, Dt) is a measure of how much information

the term wj provides, and it increases as wj becomes rare in Dt.

Since the target of our nowcasting exercise is GDP, it is preferable that the inverse

document frequency captures information relevant to current business cycles. We explic-

itly make Dt dependent on time t, that is, Dt contains all documents from 50 months

(about 1 business cycle) before t. Also, the rolling scheme ensures us to avoid data leak-

age problem. In other words, since we only use information from articles up to the day

we make the prediction, no future information about the target variable is utilized.
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When the text metrics are fed into the models described below, we select top n

principal components such that the selected components account for 50% of the total

variance. This amounts to selecting n = 15 components in our analysis. We will refer to

these principal components simply as T0 in the following analysis.

Univariate dictionary-based text metric

The second approach to transforming preprocessed text into quantitative time series

involves methods that establish a fixed relationship between input and output, without

any learning component. We refer to this approach as dictionary methods. Dictionary

methods assign specific scores (positive or negative) to particular terms and calculate the

net score per month. The dictionaries we use are based on the works of Takamura, Inui,

and Okumura (2006); Higashiyama, Inui, and Matsumoto (2008); Ito et al. (2018); and

Goshima, Shintani, and Takamura (2022).

The two dictionaries by Takamura, Inui, and Okumura (2006) and Higashiyama, Inui,

and Matsumoto (2008) aim to extract sentiment in a general context. On the other

hand, the dictionaries provided by Goshima, Shintani, and Takamura (2022) and Ito

et al. (2018) are domain-specific. The former is designed to extract sentiment about

macroeconomic developments, while the latter focuses on financial documents to measure

market sentiment. For the sake of brevity, we refer to the text metrics generated by these

four dictionaries as T1, T2, T3 and T4, respectively.

In addition, we use the method developed by Baker, Bloom, and Davis (2016) to

construct the economic policy uncertainty (EPU) index. We will refer to the EPU index

simply as T5 in the following analysis.

3.2 Out-of-sample forecast evaluation

3.2.1 Models

The forecasts are constructed using one of seven machine learning methods, which are

applied directly to estimate the seven U-MIDAS models. The seven machine learning

methods are Elastic Net, Support Vector Regression (SVR), Random Forest, Boosted
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Trees (implemented through LightGBM), Multilayer Perceptron (MLP), Convolutional

Neural Network (CNN), and Recurrent Neural Network (RNN with LSTM). The DFM

forecasts are constructed based on the specification (pf , pi) = (2, 1), which is standard in

the literature and also applied in Hayashi and Tachi (2023).

Additionally, we conduct a forecast combination of DFM and ML, either by a simple

arithmetic mean of the predictions produced by DFM and one out of 7 ML methods or

by DFM and several MLs at the same time.

We evaluate the simulated out-of-sample forecast performance of 7 machine learning

methods and one DFM. The hyperparameters for the machine learning models are re-

tuned at each forecast point using 5-fold cross-validation. In this process, we employ

an expanding window approach, progressively increasing the training data size while

maintaining a validation data size of one.

For example, at period t = R, we construct the forecast ŷR+h of a target variable yR+h

using the information only up to t = R and evaluate the forecast error yR+h − ŷR+h. For

the next period t = R+ 1, the model is re-estimated using the data up to t = R+ 1 and

forecast value ŷR+h+1 is constructed. Therefore, the hyperparameters may be different

depending on the point of forecast, even if the model specification is unchanged. For

a benchmark, we also estimate an AR(1) model and update the coefficient in the same

manner.

3.2.2 Evaluation scheme

We use a recursive scheme in our simulated out-of-sample nowcast exercises. Recall

that we use observations available at February 1, May 1, August 1, and November 1 in

each year to estimate the M1 type model. Similarly, observations at March 1, June 1,

September 1, and December 1 are used for the M2 type model, while observations at

January 1, April 1, July 1, and October 1 are used for the M3 type model.

In the recursive scheme, we start to produce pseudo real-time out-of-sample prediction

at January 1, 2018 using information after January 1, 2003. The sample size increases

as we proceed to the nowcast point. For example, to construct a nowcast (h = 0) for
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2018Q4 based on the M3 type model, the estimation period is from January 1, 2003 to

January 1, 2019 in the recursive scheme. The next nowcast for 2019Q1 based on the M3

type model is then computed by estimating the same model using data from January 1,

2003 to April 1, 2019. This procedure is repeated until the nowcast for 2022Q4 based on

the observations from January 1, 2003, to October 1, 2022, is constructed.

Nowcasts based on the M1 and M2 type models can be constructed in a similar

manner. For example, to construct a nowcast for 2019Q1 based on the M1 type model,

the estimation period is from January 1, 2003 to November 1, 2018. The next forecast

for 2019Q2 based on the M1 type model is then computed by estimating the same model

using data from January 1, 2003 to February 1, 2019. This procedure is repeated until

the forecast for 2022Q4 based on the observations from January 1, 2003 to November 1,

2022.

As a measure of forecast performance, we focus on the root mean square forecast

errors (RMSEs) defined by the square root of P−1
∑T−h

t=R (yt+h − ŷt+h)
2, where ŷt+h is the

forecast value for horizon h by a forecast model, R is the initial sample size in estimating

the model, and P (= T − R) is the number of forecasts. If the RMSE for model 1 is

smaller than the RMSE of model 2, we view that the former outperforms the latter in

the out-of-sample forecast.

3.3 Strategy for putting text metrics into the model

One goal of our study is to measure the benefit of including text information in addition

to ‘hard’ data or both ‘hard’ and ‘soft’ data in nowcasting models. However, we have no

ex-ante information about which combination of text metrics performs best. Therefore,

we explore all plausible patterns of text metric predictors.

In particular, when making a single prediction, the variables we use always include

all of the ’hard’ variables (category ’Hard’ in Table 1), none or all of the ’soft’ variables

(category ’Soft’ in Table 1), none or one of the text metrics based on a general sentiment

dictionary (T0, T1, and T2 in Table 1), and none or one of the text metrics based on

a domain-specific dictionary (T3, T4, and T5 in Table 1). Although it is common to
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include ’soft’ data in the existing literature using DFM, its usefulness in ML settings is

less clear, and thus we examine it explicitly in this paper.

Therefore, given a model, such as Elastic Net, we consider 2 × 4 × 4 = 32 different

patterns of regressors and estimate 32 variants of Elastic Net. This process entails esti-

mating seven ML models and one DFM, resulting in the estimation of 32×8 = 256 models

for each prediction. In this paper, we select at most one variable from each category as

described above because variables from the same category are likely to share similar in-

formation. Moreover, limiting the number of variables reduces the possible combinations

of variables, thus significantly reducing computation time.

4 Results

Let us now evaluate the performance of all the models considered in terms of the Root

Mean Squared Errors (RMSEs) of the nowcast (h = 0). Table 3 and Table 2 present the

best-performing triple of input, model, and the resulting RMSE for the forecast horizon

and forecast period, with the input fixed at ‘hard’ and ‘soft’ in Table 3, and without

restrictions on the input in Table 2. For example, the first row in the Jan17-Dec19

column in Table 3 shows that for the M1 type nowcasting, the RMSE of mlp is 0.743,

and this is the lowest among 18 combinations3 when we consider only ‘hard’ and ‘soft’

data as input.

We divided the out-of-sample forecasting period into two periods. The first period

Jan17-Dec19 corresponds to ”normal” time in the sense that nowcasting exercises using

DFM with ‘hard’ and ‘soft’ data work well in the literature. The second Jan20-Dec22

period corresponds to the period when the COVID-19 pandemic was at its most intense,

during which the accuracy of traditional forecasting exercises deteriorates significantly

compared to the ”normal” period.

We compare the results of Table 2 and Table 3 in Table 5, where the relative RMSE

318 models: ar1, dfm, enet, svr, rf, lgbm, mlp, cnn, lstm, dfm+enet, dfm+svr, dfm+rf, dfm+lgbm,
dfm+mlp, dfm+cnn, dfm+lstm, mean4 (unweighted average of enet, rf, mlp, and dfm), mean8 (un-
weighted average of 1 dfm and 7 mls), where A + B denotes forecast combination by unweighted mean
of model A and model B.
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columns show the ratio of the RMSEs, and the statistic columns report the test statistic

developed in Pitarakis (2023) for the null hypothesis that the predictions of the best

model using only H and S have the same accuracy as the predictions of the best model

when the input is unrestricted. The test introduced in Pitarakis (2023) accommodates the

comparison of nested models in a recursive scheme and is thus suitable for our situation.

4.1 Benefits of news data in prediction

Table 5 shows that the incorporation of news text data consistently reduces prediction

errors, and most of these improvements are statistically significant. This advantage is

particularly evident during the COVID-19 period, where traditional methods experience

a marked decline in accuracy. Furthermore, as shown in Table 2, the inclusion of multiple

types of text data generally outperforms the inclusion of a single type of text data.

A similar comparison is conducted in Tables 6, 7, and 9, with models fixed for DFM.

Table 9 demonstrates a reduction in prediction error when text data is included. However,

only some instances (M2 Jan20-22; M2 Overall) are statistically significant. In particular,

the benefits of incorporating text data are particularly pronounced during the COVID-19

period.

Interestingly, Tables 2 and 6 also reveal that when text metrics generated by domain-

specific dictionaries (T3, T4, and T5) are included in the model, the most frequently

selected metrics are either T3, which is designed to extract sentiment about macroe-

conomic developments, or T5, which aims to capture economic policy uncertainty. This

suggests that text metrics focused on gauging macroeconomic developments contain valu-

able information to predict GDP.

We also report the best-performing model among the 18 models using only ‘hard’

data and the performance of DFM using only ‘hard’ data in Table 4 and 8, respectively.

Comparing these with their ‘hard’ and ‘soft’ counterparts in Table 3 and 7 reveals that

incorporating ‘soft’ data not only supports previous findings that the combination of

‘hard’ and ‘soft’ data enhances DFM performance but also improves nowcasting accuracy

in the ML setting.
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To evaluate the benefit of adding news text data in specific models, we report the

RMSEs in Tables 10, 11 and 12, representing the ”normal”, ”COVID-19”, and the entire

periods, respectively. These tables show the RMSEs of the best-performing input com-

binations and their relative RMSEs compared to the baseline inputs using only ‘hard’

and ‘soft’ data. For example, during the period from January 2017 to December 2019,

among M1-type models, the DFM with the input combination (H,S, T0, T4) exhibited

the best performance, with an RMSE of 0.89 and a ratio of 0.93 compared to the (H,S)

counterpart. However, this reduction in RMSE was not statistically significant according

to Pitarakis (2023).

Again, we observe a consistent reduction in RMSEs across models, particularly notable

in ML models. Interestingly, the magnitude and significance of the reduction in RMSE

are pronounced for models that accommodate a high degree of non-linearity, such as MLP,

LSTM, and CNN. Furthermore, comparing Tables 10 and 11, the reduction in RMSE for

models such as Elastic Net and SVR starts to achieve statistical significance during the

COVID-19 period.

The trajectories of the MLP and DFM for two target quarters, 2019Q2 and 2020Q2,

representing ”normal” times and the sharpest GDP decline caused by the pandemic,

respectively, are shown in Figures 3 and 4. Focusing on the target during the COVID-19

period, both predictions generated using ‘hard’ and ‘soft’ data (gray dots) get closer to

the actual value (red dot) as the prediction horizon moves from the M1-type forecast to

the M3-type nowcast as new information becomes available. However, when news data

are available (gray dots), the predictions approach the target much more quickly for both

DFM and MLP.

4.2 Benefits of combining DFM with ML

As shown in Table 2, many of the best-performing models involve the forecast combination

of DFM and ML. Table 13 presents a comparison between the forecast combination of

DFM and ML methods versus DFM alone. Across all forecast horizons (M1, M2, M3)

and time periods, the combination of DFM and ML consistently outperforms DFM alone,

21



as indicated by relative RMSEs below 1. This improvement is particularly significant for

longer-horizon nowcasts (M1 and M2 type) across all periods. Notably, the advantage

of ML+DFM remains evident even during the COVID-19 pandemic period, especially

for M1 type nowcasts, where we observe a statistically significant improvement (relative

RMSE of 0.86, significant at the 1% level).

These findings highlight the potential of integrating traditional econometric methods

like DFM with flexible ML approaches. Their complementary strengths appear especially

valuable during economic instability, such as the COVID-19 pandemic, where they may

better capture complex, rapidly changing data relationships. However, the improvement

varies across forecast horizons and periods, suggesting that the advantages of this com-

bined approach may depend on specific economic conditions and the forecasting task at

hand.

5 Conclusion

In this paper, we conduct a nowcasting analysis of Japan’s GDP using machine learning.

We use the machine learning approach because the estimation of the unrestricted mixed-

data sampling (MIDAS) models in our setting involves high-dimensional data. Based on

the unrestricted MIDAS model with macroeconomic indicators, survey-based indicators,

and text information extracted from news articles, we find that text information helps to

enhance nowcasting performance, especially during the COVID-19 period. Furthermore,

the combination of machine learning and dynamic factor models has the potential to

outperform using either method alone.

The use of text data offers benefits beyond improving accuracy. The spread of COVID-

19 caused significant economic fluctuations over short periods due to subsequent lock-

downs. This economic turmoil has underscored the importance of timely macroeconomic

assessments for economists. Traditional hard and survey data, on which economists heav-

ily rely for economic analysis, take several weeks to be released. In contrast, text-based

information can be utilized in real time. Therefore, incorporating news text data is a
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valuable option when the accuracy of existing models is affected by large unexpected

events, such as the COVID-19 pandemic shock.
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Table 2. Best models

Jan17-Dec19 Jan20-Dec22 Overall

Input Model RMSE Input Model RMSE Input Model RMSE

M1 H, S, T2 lstm 0.556 H, S, T1, T5 cnn+dfm 1.687 H, S, T1, T5 cnn+dfm 1.300
M2 H, S, T0, T5 cnn+dfm 0.486 H, S, T2, T3 svr+dfm 0.724 H, S, T0, T5 cnn+dfm 0.705
M3 H, S svr+dfm 0.349 H, S, T1, T5 cnn+dfm 0.685 H, S, T1, T5 cnn+dfm 0.594

Note: Hereafter, plus appears in the column Model denotes forecast combination by unweighted
mean of the two models.

Table 3. Best models when inputs fixed at Hard and Soft indicators

Jan17-Dec19 Jan20-Dec22 Overall

Input Model RMSE Input Model RMSE Input Model RMSE

M1 H, S mlp 0.743 H, S enet+dfm 1.780 H, S enet+dfm 1.417
M2 H, S dfm 0.771 H, S cnn+dfm 0.952 H, S cnn+dfm 0.902
M3 H, S svr+dfm 0.349 H, S dfm 0.797 H, S dfm 0.620

Table 4. Best models when inputs fixed at Hard indicators

Jan17-Dec19 Jan20-Dec22 Overall

Input Model RMSE Input Model RMSE Input Model RMSE

M1 H cnn 0.765 H lstm 2.697 H lstm 1.983
M2 H cnn 0.724 H dfm 1.305 H dfm 1.115
M3 H svr+dfm 0.349 H mean 4 0.959 H mean 4 0.734

Note: mean 4 denotes forecast combination by unweighted mean of enet, rf, mlp, and
dfm.

Table 5. Relative accuracy of hard/soft/news inputs to hard/soft inputs

Jan17-Dec19 Jan20-Dec22 Overall

relative RMSE statistic relative RMSE statistic relative RMSE statistic

M1 0.75 3.72*** 0.95 1.06 0.92 1.68**
M2 0.63 14.27*** 0.76 8.38*** 0.78 8.90***
M3 1.00 0.30 0.86 1.47* 0.96 -1.92

Note: This table compares the results from Table 2 and Table 3. The relative RMSE columns
show the ratio of RMSEs, and the statistic columns report the test statistic ST (τ0, λ

0
2) in

Pitarakis (2023) of the null that the predictions of the best model using only H and S have
better accuracy compared to the predictions of the best model when the input is unrestricted.
We set (τ0 = 0.8, λ0

2 = 1) in line with the guideline provided in Pitarakis (2023).
*10% significance level. **5% significance level. ***1% significance level.
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Table 6. Best models for Dynamic Factor Model

Jan17-Dec19 Jan20-Dec22 Overall

Input Model RMSE Input Model RMSE Input Model RMSE

M1 H, S, T0, T4 dfm 0.890 H, S, T0, T5 dfm 1.967 H, S, T0, T5 dfm 1.534
M2 H, S, T3 dfm 0.762 H, S, T0, T5 dfm 0.755 H, S, T0, T5 dfm 0.766
M3 H, S, T0 dfm 0.364 H, S, T1 dfm 0.791 H, S, T1 dfm 0.617

Table 7. Best models for Dynamic Factor Model when inputs fixed at Hard
and Soft indicators

Jan17-Dec19 Jan20-Dec22 Overall

Input Model RMSE Input Model RMSE Input Model RMSE

M1 H, S dfm 0.958 H, S dfm 1.986 H, S dfm 1.559
M2 H, S dfm 0.771 H, S dfm 1.018 H, S dfm 0.903
M3 H, S dfm 0.368 H, S dfm 0.797 H, S dfm 0.620

Table 8. Best models for Dynamic Factor Model when inputs fixed at Hard
indicators

Jan17-Dec19 Jan20-Dec22 Overall

Input Model RMSE Input Model RMSE Input Model RMSE

M1 H dfm 0.965 H dfm 2.794 H dfm 2.090
M2 H dfm 0.886 H dfm 1.305 H dfm 1.115
M3 H dfm 0.363 H dfm 1.041 H dfm 0.779

Table 9. Relative accuracy of hard/soft/news inputs to hard/soft inputs for
DFM

Jan17-Dec19 Jan20-Dec22 Overall

relative RMSE statistic relative RMSE statistic relative RMSE statistic

M1 0.93 -1.58 0.99 0.48 0.98 0.78
M2 0.99 -1.63 0.74 8.91*** 0.85 5.64***
M3 0.99 -0.01 0.99 -1.32 0.99 -1.94

Note: This table compares the results from Table 6 and Table 7. The relative RMSE
columns show the ratio of RMSEs, and the statistic columns report the test statistic
ST (τ0, λ

0
2) in Pitarakis (2023) of the null that the predictions of the best model using

only H and S have the same accuracy as the predictions of the best model when the input
is unrestricted. We set (τ0 = 0.8, λ0

2 = 1) in line with the guideline provided in Pitarakis
(2023).
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Table 10. Best input combination (versus hard/soft) during Jan17-Dec19

Input Model RMSE relative RMSE statistic

M1 H, S, T0, T4 dfm 0.89 0.93 -1.58
M2 H, S, T3 dfm 0.76 0.99 -1.63
M3 H, S, T0 dfm 0.36 0.99 -0.01

M1 H, S, T0, T3 enet 0.89 0.97 -1.68
M2 H, S, T0 enet 0.91 1.00 -1.89
M3 H, S, T0, T5 enet 0.43 0.97 0.86

M1 H, S, T2 svr 0.94 0.99 -1.91
M2 H, S, T3 svr 0.94 1.00 -1.95
M3 H, S svr 0.37 1.00 0.56

M1 H, S, T0, T3 rf 0.85 0.89 -1.27
M2 H, S, T2 rf 0.86 0.95 -1.74
M3 H, S, T1, T4 rf 0.42 0.84 5.84***

M1 H, S, T0 lgbm 0.95 0.87 -0.42
M2 H, S, T0 lgbm 0.84 0.67 7.51***
M3 H, S, T1, T5 lgbm 0.59 0.83 9.35***

M1 H, S, T0 mlp 0.58 0.77 3.06***
M2 H, S, T2, T4 mlp 0.64 0.64 7.17***
M3 H, S, T5 mlp 0.53 0.80 9.04***

M1 H, S, T2 lstm 0.56 0.72 6.07***
M2 H, S, T0, T3 lstm 0.72 0.83 0.11
M3 H, S, T2 lstm 0.44 0.72 6.36***

M1 H, S, T3 cnn 0.59 0.68 18.59***
M2 H, S, T0, T3 cnn 0.66 0.67 12.84***
M3 H, S, T5 cnn 0.57 0.79 8.73***

Note: The relative RMSE columns show the ratio of RMSE to the
H, S counterpart
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Table 11. Best input combination (versus hard/soft) during Jan20-Dec22

Input Model RMSE relative RMSE statistic

M1 H, S, T0, T5 dfm 1.97 0.99 0.48
M2 H, S, T0, T5 dfm 0.75 0.74 8.91***
M3 H, S, T1 dfm 0.79 0.99 -1.32

M1 H, S, T0, T3 enet 2.01 0.83 3.08***
M2 H, S, T0 enet 1.25 0.94 2.27**
M3 H, S, T1, T4 enet 1.17 0.93 1.82**

M1 H, S, T0, T4 svr 2.29 0.72 6.33***
M2 H, S, T4 svr 0.95 0.37 74.93***
M3 H, S, T5 svr 1.18 0.76 6.26***

M1 H, S, T2, T3 rf 2.97 0.96 0.73
M2 H, S, T2 rf 2.44 0.99 0.35
M3 H, S rf 2.34 1.00 0.26

M1 H, S, T0, T5 lgbm 2.99 0.94 1.42*
M2 H, S, T1, T4 lgbm 2.46 0.96 1.17
M3 H, S, T3 lgbm 2.55 0.93 2.17**

M1 H, S, T0, T3 mlp 2.51 0.92 2.72***
M2 H, S, T1, T3 mlp 0.99 0.50 64.34***
M3 H, S, T0, T3 mlp 1.06 0.69 17.81***

M1 H, S, T5 lstm 2.42 0.86 2.25**
M2 H, S, T0, T3 lstm 2.21 0.87 1.91**
M3 H, S, T1, T4 lstm 1.88 0.91 1.55*

M1 H, S, T1, T5 cnn 1.74 0.90 2.24**
M2 H, S, T1, T3 cnn 1.16 0.98 1.38*
M3 H, S, T1, T3 cnn 1.07 0.79 12.91***

Note: The relative RMSE columns show the ratio of RMSE to the
H, S counterpart
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Table 12. Best input combination (versus hard/soft) for the entire sample
(Jan17-Dec22)

Input Model RMSE relative RMSE statistic

M1 H, S, T0, T5 dfm 1.53 0.98 0.78
M2 H, S, T0, T5 dfm 0.77 0.85 5.64***
M3 H, S, T1 dfm 0.62 0.99 -1.94

M1 H, S, T0, T3 enet 1.56 0.85 2.68***
M2 H, S, T0 enet 1.10 0.96 1.37*
M3 H, S, T1, T4 enet 0.88 0.94 0.91

M1 H, S, T0, T4 svr 1.75 0.75 5.44***
M2 H, S, T4 svr 0.95 0.49 33.92***
M3 H, S, T5 svr 0.88 0.78 6.17***

M1 H, S, T2, T3 rf 2.21 0.97 0.9
M2 H, S, T2 rf 1.83 0.99 0.61
M3 H, S rf 1.69 1.00 0.36

M1 H, S, T0 lgbm 2.23 0.94 1.55*
M2 H, S, T1, T4 lgbm 1.92 0.95 1.56*
M3 H, S, T3 lgbm 1.86 0.93 0.31

M1 H, S, T0, T3 mlp 1.86 0.93 2.25**
M2 H, S, T1, T3 mlp 1.04 0.66 18.68***
M3 H, S, T0, T3 mlp 0.89 0.76 11.09***

M1 H, S, T5 lstm 1.78 0.87 2.44***
M2 H, S, T0, T3 lstm 1.64 0.87 2.28**
M3 H, S, T1, T4 lstm 1.38 0.90 1.83**

M1 H, S, T1, T5 cnn 1.32 0.89 3.08***
M2 H, S, T1, T3 cnn 1.01 0.93 3.56***
M3 H, S, T1, T3 cnn 0.89 0.82 8.38***

Note: The relative RMSE columns show the ratio of RMSE to the
H, S counterpart
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Table 13. Relative accuracy of forecast combination of DFM and ML to DFM

Jan17-Dec19 Jan20-Dec22 Overall

relative RMSE statistic relative RMSE statistic relative RMSE statistic

M1 0.72 0.92 0.86 2.72*** 0.85 3.36***
M2 0.64 12.01*** 0.96 1.46* 0.92 2.87***
M3 0.98 0.52 0.86 1.10 0.92 -0.66

Note: This table compares the results of two model forms: ml+dfm and dfm. For each
type (M1, M2, M3) and period combination, we compare the best model among all input
patterns that takes the form of forecast combination with dfm, and the best model among
all input patterns using dfm alone.
The relative RMSE columns show the ratio of RMSEs, and the statistic columns report
the test statistic ST (τ0, λ

0
2) in Pitarakis (2023) of the null that the predictions of dfm have

better accuracy compared to the ml+dfm. We set (τ0 = 0.8, λ0
2 = 1) in line with the

guideline provided in Pitarakis (2023).
*10% significance level. **5% significance level. ***1% significance level.

Figure 1. GDP and selected hard data
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Figure 2. Text-based indicators
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Figure 3. Predictions of MLP by input
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Note: This figure tracks the predictions produced by MLP with different inputs.
Predictions are made at the first day of each month.
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Figure 4. Predictions of DFM by input
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Note: This figure tracks the predictions produced by DFM with different inputs.
Predictions are made at the first day of each month.
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